Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +191 -0
- requirements.txt +7 -0
app.py
ADDED
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# import os
|
2 |
+
# import cv2
|
3 |
+
# import re
|
4 |
+
# import numpy as np
|
5 |
+
# from PIL import Image, ImageDraw, ImageFont
|
6 |
+
# from paddleocr import PaddleOCR
|
7 |
+
# from pdf2image import convert_from_path
|
8 |
+
# import gradio as gr
|
9 |
+
|
10 |
+
# # Specify the path to the Poppler bin directory
|
11 |
+
# poppler_path = r"C:\\poppler\\poppler-24.08.0\\Library\\bin"
|
12 |
+
|
13 |
+
# # Function to check proximity of bounding boxes
|
14 |
+
# def are_boxes_close(box1, box2, y_threshold=50):
|
15 |
+
# y1_center = (box1[0][1] + box1[2][1]) / 2
|
16 |
+
# y2_center = (box2[0][1] + box2[2][1]) / 2
|
17 |
+
# return abs(y1_center - y2_center) <= y_threshold
|
18 |
+
|
19 |
+
# # Function to extract terms with specific rules
|
20 |
+
# def extract_specific_terms(ocr_results):
|
21 |
+
# extracted_terms = []
|
22 |
+
|
23 |
+
# for line in ocr_results[0]:
|
24 |
+
# detected_text = line[1][0] # Extracted text
|
25 |
+
# box = line[0] # Bounding box of the detected text
|
26 |
+
|
27 |
+
# if re.match(r"Bill of Lading:\s*\d+", detected_text):
|
28 |
+
# extracted_terms.append({'detected_text': detected_text, 'bounding_box': box})
|
29 |
+
|
30 |
+
# elif re.match(r"Page:\s*\w+", detected_text):
|
31 |
+
# extracted_terms.append({'detected_text': detected_text, 'bounding_box': box})
|
32 |
+
|
33 |
+
# elif detected_text in ["Shipper", "Receiver", "Carrier"]:
|
34 |
+
# extracted_terms.append({'detected_text': detected_text + " Signature", 'bounding_box': box})
|
35 |
+
|
36 |
+
# elif detected_text == "Signature":
|
37 |
+
# extracted_terms.append({'detected_text': detected_text, 'bounding_box': box})
|
38 |
+
|
39 |
+
# return extracted_terms
|
40 |
+
|
41 |
+
# # Function to annotate image with detected terms
|
42 |
+
# def annotate_image_with_terms(image, terms):
|
43 |
+
# pil_image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
|
44 |
+
# draw = ImageDraw.Draw(pil_image)
|
45 |
+
|
46 |
+
# font_size = 40
|
47 |
+
# try:
|
48 |
+
# font = ImageFont.truetype("arial.ttf", font_size)
|
49 |
+
# except IOError:
|
50 |
+
# font = ImageFont.load_default()
|
51 |
+
|
52 |
+
# for term in terms:
|
53 |
+
# box = term['bounding_box']
|
54 |
+
# detected_text = term['detected_text']
|
55 |
+
|
56 |
+
# points = [(int(x[0]), int(x[1])) for x in box]
|
57 |
+
# draw.polygon(points, outline="blue", width=2)
|
58 |
+
# position = (points[0][0], points[0][1] - font_size - 5)
|
59 |
+
# draw.text(position, detected_text, fill="red", font=font)
|
60 |
+
|
61 |
+
# return cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)
|
62 |
+
|
63 |
+
# # Main processing function
|
64 |
+
# def process_file(file):
|
65 |
+
# ocr = PaddleOCR(lang='en')
|
66 |
+
# extracted_terms = []
|
67 |
+
|
68 |
+
# if file.name.endswith(".pdf"):
|
69 |
+
# images = convert_from_path(file.name, poppler_path=poppler_path)
|
70 |
+
# processed_images = []
|
71 |
+
# for image in images:
|
72 |
+
# image_np = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
73 |
+
# ocr_results = ocr.ocr(image_np, cls=True)
|
74 |
+
# extracted_terms = extract_specific_terms(ocr_results)
|
75 |
+
# annotated_image = annotate_image_with_terms(image_np, extracted_terms)
|
76 |
+
# processed_images.append(annotated_image)
|
77 |
+
|
78 |
+
# return [Image.fromarray(img) for img in processed_images]
|
79 |
+
|
80 |
+
# else:
|
81 |
+
# image = cv2.imread(file.name)
|
82 |
+
# ocr_results = ocr.ocr(image, cls=True)
|
83 |
+
# extracted_terms = extract_specific_terms(ocr_results)
|
84 |
+
# annotated_image = annotate_image_with_terms(image, extracted_terms)
|
85 |
+
# return Image.fromarray(annotated_image)
|
86 |
+
|
87 |
+
# # Gradio Interface
|
88 |
+
# def gradio_interface(file):
|
89 |
+
# result = process_file(file)
|
90 |
+
# if isinstance(result, list):
|
91 |
+
# return result[0] # Display only the first page
|
92 |
+
# return result
|
93 |
+
|
94 |
+
# iface = gr.Interface(
|
95 |
+
# fn=gradio_interface,
|
96 |
+
# inputs=gr.File(label="Upload an Image or PDF", file_types=[".pdf", ".png", ".jpg", ".jpeg"]),
|
97 |
+
# outputs="image",
|
98 |
+
# live=True,
|
99 |
+
# title="OCR Term Extraction",
|
100 |
+
# description="Upload an image or PDF containing text to detect and annotate terms such as 'Bill of Lading', 'Page', and signatures.",
|
101 |
+
# allow_flagging="never"
|
102 |
+
# )
|
103 |
+
# iface.launch()
|
104 |
+
|
105 |
+
|
106 |
+
|
107 |
+
import os
|
108 |
+
import cv2
|
109 |
+
import re
|
110 |
+
import numpy as np
|
111 |
+
from PIL import Image, ImageDraw, ImageFont
|
112 |
+
from paddleocr import PaddleOCR
|
113 |
+
import gradio as gr
|
114 |
+
|
115 |
+
# Function to check proximity of bounding boxes
|
116 |
+
def are_boxes_close(box1, box2, y_threshold=50):
|
117 |
+
y1_center = (box1[0][1] + box1[2][1]) / 2
|
118 |
+
y2_center = (box2[0][1] + box2[2][1]) / 2
|
119 |
+
return abs(y1_center - y2_center) <= y_threshold
|
120 |
+
|
121 |
+
# Function to extract terms with specific rules
|
122 |
+
def extract_specific_terms(ocr_results):
|
123 |
+
extracted_terms = []
|
124 |
+
|
125 |
+
for line in ocr_results[0]:
|
126 |
+
detected_text = line[1][0] # Extracted text
|
127 |
+
box = line[0] # Bounding box of the detected text
|
128 |
+
|
129 |
+
if re.match(r"Bill of Lading:\s*\d+", detected_text):
|
130 |
+
extracted_terms.append({'detected_text': detected_text, 'bounding_box': box})
|
131 |
+
|
132 |
+
elif re.match(r"Page:\s*\w+", detected_text):
|
133 |
+
extracted_terms.append({'detected_text': detected_text, 'bounding_box': box})
|
134 |
+
|
135 |
+
elif detected_text in ["Shipper", "Receiver", "Carrier"]:
|
136 |
+
extracted_terms.append({'detected_text': detected_text + " Signature", 'bounding_box': box})
|
137 |
+
|
138 |
+
elif detected_text == "Signature":
|
139 |
+
extracted_terms.append({'detected_text': detected_text, 'bounding_box': box})
|
140 |
+
|
141 |
+
return extracted_terms
|
142 |
+
|
143 |
+
# Function to annotate image with detected terms
|
144 |
+
def annotate_image_with_terms(image, terms):
|
145 |
+
pil_image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
|
146 |
+
draw = ImageDraw.Draw(pil_image)
|
147 |
+
|
148 |
+
font_size = 20
|
149 |
+
try:
|
150 |
+
font = ImageFont.truetype("arial.ttf", font_size)
|
151 |
+
except IOError:
|
152 |
+
font = ImageFont.load_default()
|
153 |
+
|
154 |
+
for term in terms:
|
155 |
+
box = term['bounding_box']
|
156 |
+
detected_text = term['detected_text']
|
157 |
+
|
158 |
+
points = [(int(x[0]), int(x[1])) for x in box]
|
159 |
+
draw.polygon(points, outline="blue", width=2)
|
160 |
+
position = (points[0][0], points[0][1] - font_size - 5)
|
161 |
+
draw.text(position, detected_text, fill="red", font=font)
|
162 |
+
|
163 |
+
return cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)
|
164 |
+
|
165 |
+
# Main processing function
|
166 |
+
def process_file(file):
|
167 |
+
ocr = PaddleOCR(lang='en')
|
168 |
+
extracted_terms = []
|
169 |
+
|
170 |
+
# Handle image files (PNG, JPG, JPEG)
|
171 |
+
image = cv2.imread(file.name)
|
172 |
+
ocr_results = ocr.ocr(image, cls=True)
|
173 |
+
extracted_terms = extract_specific_terms(ocr_results)
|
174 |
+
annotated_image = annotate_image_with_terms(image, extracted_terms)
|
175 |
+
return Image.fromarray(annotated_image)
|
176 |
+
|
177 |
+
# Gradio Interface
|
178 |
+
def gradio_interface(file):
|
179 |
+
result = process_file(file)
|
180 |
+
return result
|
181 |
+
|
182 |
+
iface = gr.Interface(
|
183 |
+
fn=gradio_interface,
|
184 |
+
inputs=gr.File(label="Upload an Image", file_types=[".png", ".jpg", ".jpeg"]),
|
185 |
+
outputs="image",
|
186 |
+
live=True,
|
187 |
+
title="OCR Term Extraction",
|
188 |
+
description="Upload an image containing text to detect and annotate terms such as 'Bill of Lading', 'Page', and signatures.",
|
189 |
+
allow_flagging="never"
|
190 |
+
)
|
191 |
+
iface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
opencv-python
|
2 |
+
numpy
|
3 |
+
Pillow
|
4 |
+
paddlepaddle
|
5 |
+
# pdf2image
|
6 |
+
gradio
|
7 |
+
# poppler-utils
|