Spaces:
Running
Running
umairahmad1789
commited on
Commit
•
2c880eb
1
Parent(s):
d39fb79
Upload 11 files
Browse files- .gitattributes +4 -0
- Reference_ScalingBox.jpg +0 -0
- app.py +279 -0
- examples/Test20.jpg +3 -0
- examples/Test21.jpg +3 -0
- examples/Test22.jpg +3 -0
- examples/Test23.jpg +3 -0
- last.pt +3 -0
- outputs/out.dxf +4058 -0
- outputs/scaled_mask_new.jpg +0 -0
- requirements.txt +6 -0
- scalingtestupdated.py +167 -0
.gitattributes
CHANGED
@@ -33,3 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
examples/Test20.jpg filter=lfs diff=lfs merge=lfs -text
|
37 |
+
examples/Test21.jpg filter=lfs diff=lfs merge=lfs -text
|
38 |
+
examples/Test22.jpg filter=lfs diff=lfs merge=lfs -text
|
39 |
+
examples/Test23.jpg filter=lfs diff=lfs merge=lfs -text
|
Reference_ScalingBox.jpg
ADDED
app.py
ADDED
@@ -0,0 +1,279 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from pathlib import Path
|
3 |
+
from typing import List, Union
|
4 |
+
from PIL import Image
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
from torchvision import transforms
|
8 |
+
from ultralytics import YOLOWorld, YOLO
|
9 |
+
from ultralytics.engine.results import Results
|
10 |
+
from ultralytics.utils.plotting import save_one_box
|
11 |
+
from transformers import AutoModelForImageSegmentation
|
12 |
+
import cv2
|
13 |
+
import ezdxf
|
14 |
+
import gradio as gr
|
15 |
+
import gc
|
16 |
+
from scalingtestupdated import calculate_scaling_factor
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
def yolo_detect(
|
21 |
+
image: Union[str, Path, int, Image.Image, list, tuple, np.ndarray, torch.Tensor],
|
22 |
+
classes: List[str],
|
23 |
+
) -> np.ndarray:
|
24 |
+
drawer_detector = YOLOWorld("yolov8x-worldv2.pt")
|
25 |
+
drawer_detector.set_classes(classes)
|
26 |
+
results: List[Results] = drawer_detector.predict(image)
|
27 |
+
boxes = []
|
28 |
+
for result in results:
|
29 |
+
boxes.append(
|
30 |
+
save_one_box(result.cpu().boxes.xyxy, im=result.orig_img, save=False)
|
31 |
+
)
|
32 |
+
|
33 |
+
del drawer_detector
|
34 |
+
|
35 |
+
return boxes[0]
|
36 |
+
|
37 |
+
|
38 |
+
def remove_bg(image: np.ndarray) -> np.ndarray:
|
39 |
+
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
40 |
+
"zhengpeng7/BiRefNet", trust_remote_code=True
|
41 |
+
)
|
42 |
+
|
43 |
+
device = "cpu"
|
44 |
+
torch.set_float32_matmul_precision(["high", "highest"][0])
|
45 |
+
|
46 |
+
birefnet.to(device)
|
47 |
+
birefnet.eval()
|
48 |
+
transform_image = transforms.Compose(
|
49 |
+
[
|
50 |
+
transforms.Resize((1024, 1024)),
|
51 |
+
transforms.ToTensor(),
|
52 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
53 |
+
]
|
54 |
+
)
|
55 |
+
|
56 |
+
image = Image.fromarray(image)
|
57 |
+
input_images = transform_image(image).unsqueeze(0).to("cpu")
|
58 |
+
|
59 |
+
# Prediction
|
60 |
+
with torch.no_grad():
|
61 |
+
preds = birefnet(input_images)[-1].sigmoid().cpu()
|
62 |
+
pred = preds[0].squeeze()
|
63 |
+
|
64 |
+
# Show Results
|
65 |
+
pred_pil = transforms.ToPILImage()(pred)
|
66 |
+
# Scale proportionally with max length to 1024 for faster showing
|
67 |
+
scale_ratio = 1024 / max(image.size)
|
68 |
+
scaled_size = (int(image.size[0] * scale_ratio), int(image.size[1] * scale_ratio))
|
69 |
+
|
70 |
+
del birefnet
|
71 |
+
|
72 |
+
return np.array(pred_pil.resize(scaled_size))
|
73 |
+
|
74 |
+
def exclude_scaling_box(image: np.ndarray, bbox: np.ndarray, orig_size: tuple, processed_size: tuple, expansion_factor: float = 1.5) -> np.ndarray:
|
75 |
+
# Unpack the bounding box
|
76 |
+
x_min, y_min, x_max, y_max = map(int, bbox)
|
77 |
+
|
78 |
+
# Calculate scaling factors
|
79 |
+
scale_x = processed_size[1] / orig_size[1] # Width scale
|
80 |
+
scale_y = processed_size[0] / orig_size[0] # Height scale
|
81 |
+
|
82 |
+
# Adjust bounding box coordinates
|
83 |
+
x_min = int(x_min * scale_x)
|
84 |
+
x_max = int(x_max * scale_x)
|
85 |
+
y_min = int(y_min * scale_y)
|
86 |
+
y_max = int(y_max * scale_y)
|
87 |
+
|
88 |
+
# Calculate expanded box coordinates
|
89 |
+
box_width = x_max - x_min
|
90 |
+
box_height = y_max - y_min
|
91 |
+
expanded_x_min = max(0, int(x_min - (expansion_factor - 1) * box_width / 2))
|
92 |
+
expanded_x_max = min(image.shape[1], int(x_max + (expansion_factor - 1) * box_width / 2))
|
93 |
+
expanded_y_min = max(0, int(y_min - (expansion_factor - 1) * box_height / 2))
|
94 |
+
expanded_y_max = min(image.shape[0], int(y_max + (expansion_factor - 1) * box_height / 2))
|
95 |
+
|
96 |
+
# Black out the expanded region
|
97 |
+
image[expanded_y_min:expanded_y_max, expanded_x_min:expanded_x_max] = 0
|
98 |
+
|
99 |
+
return image
|
100 |
+
|
101 |
+
|
102 |
+
def extract_outlines(binary_image: np.ndarray) -> np.ndarray:
|
103 |
+
"""
|
104 |
+
Extracts and draws the outlines of masks from a binary image.
|
105 |
+
Args:
|
106 |
+
binary_image: Grayscale binary image where white represents masks and black is the background.
|
107 |
+
Returns:
|
108 |
+
Image with outlines drawn.
|
109 |
+
"""
|
110 |
+
# Detect contours from the binary image
|
111 |
+
contours, _ = cv2.findContours(
|
112 |
+
binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
|
113 |
+
)
|
114 |
+
|
115 |
+
# Create a blank image to draw contours
|
116 |
+
outline_image = np.zeros_like(binary_image)
|
117 |
+
# Smooth the contours
|
118 |
+
smoothed_contours = []
|
119 |
+
for contour in contours:
|
120 |
+
# Calculate epsilon for approxPolyDP
|
121 |
+
epsilon = 0.002 * cv2.arcLength(contour, True)
|
122 |
+
# Approximate the contour with fewer points
|
123 |
+
smoothed_contour = cv2.approxPolyDP(contour, epsilon, True)
|
124 |
+
smoothed_contours.append(smoothed_contour)
|
125 |
+
|
126 |
+
# Draw the contours on the blank image
|
127 |
+
cv2.drawContours(
|
128 |
+
outline_image, smoothed_contours, -1, (255), thickness=1
|
129 |
+
) # White color for outlines
|
130 |
+
|
131 |
+
return cv2.bitwise_not(outline_image), smoothed_contours
|
132 |
+
|
133 |
+
|
134 |
+
def shrink_bbox(image: np.ndarray, shrink_factor: float):
|
135 |
+
"""
|
136 |
+
Crops the central 80% of the image, maintaining proportions for non-square images.
|
137 |
+
Args:
|
138 |
+
image: Input image as a NumPy array.
|
139 |
+
Returns:
|
140 |
+
Cropped image as a NumPy array.
|
141 |
+
"""
|
142 |
+
height, width = image.shape[:2]
|
143 |
+
center_x, center_y = width // 2, height // 2
|
144 |
+
|
145 |
+
# Calculate 80% dimensions
|
146 |
+
new_width = int(width * shrink_factor)
|
147 |
+
new_height = int(height * shrink_factor)
|
148 |
+
|
149 |
+
# Determine the top-left and bottom-right points for cropping
|
150 |
+
x1 = max(center_x - new_width // 2, 0)
|
151 |
+
y1 = max(center_y - new_height // 2, 0)
|
152 |
+
x2 = min(center_x + new_width // 2, width)
|
153 |
+
y2 = min(center_y + new_height // 2, height)
|
154 |
+
|
155 |
+
# Crop the image
|
156 |
+
cropped_image = image[y1:y2, x1:x2]
|
157 |
+
return cropped_image
|
158 |
+
|
159 |
+
|
160 |
+
# def to_dxf(outlines):
|
161 |
+
# upper_range_tuple = (200)
|
162 |
+
# lower_range_tuple = (0)
|
163 |
+
|
164 |
+
# doc = ezdxf.new('R2010')
|
165 |
+
# msp = doc.modelspace()
|
166 |
+
# masked_jpg = cv2.inRange(outlines,lower_range_tuple, upper_range_tuple)
|
167 |
+
|
168 |
+
# for i in range(0,masked_jpg.shape[0]):
|
169 |
+
# for j in range(0,masked_jpg.shape[1]):
|
170 |
+
# if masked_jpg[i][j] == 255:
|
171 |
+
# msp.add_line((j,masked_jpg.shape[0] - i), (j,masked_jpg.shape[0] - i))
|
172 |
+
|
173 |
+
# doc.saveas("./outputs/out.dxf")
|
174 |
+
# return "./outputs/out.dxf"
|
175 |
+
|
176 |
+
def to_dxf(contours):
|
177 |
+
doc = ezdxf.new()
|
178 |
+
msp = doc.modelspace()
|
179 |
+
|
180 |
+
for contour in contours:
|
181 |
+
points = [(point[0][0], point[0][1]) for point in contour]
|
182 |
+
msp.add_lwpolyline(points, close=True) # Add a polyline for each contour
|
183 |
+
|
184 |
+
doc.saveas("./outputs/out.dxf")
|
185 |
+
return "./outputs/out.dxf"
|
186 |
+
|
187 |
+
def smooth_contours(contour):
|
188 |
+
epsilon = 0.01 * cv2.arcLength(contour, True) # Adjust factor (e.g., 0.01)
|
189 |
+
return cv2.approxPolyDP(contour, epsilon, True)
|
190 |
+
|
191 |
+
|
192 |
+
def scale_image(image: np.ndarray, scale_factor: float) -> np.ndarray:
|
193 |
+
"""
|
194 |
+
Resize image by scaling both width and height by the same factor.
|
195 |
+
|
196 |
+
Args:
|
197 |
+
image: Input numpy image
|
198 |
+
scale_factor: Factor to scale the image (e.g., 0.5 for half size, 2 for double size)
|
199 |
+
|
200 |
+
Returns:
|
201 |
+
np.ndarray: Resized image
|
202 |
+
"""
|
203 |
+
if scale_factor <= 0:
|
204 |
+
raise ValueError("Scale factor must be positive")
|
205 |
+
|
206 |
+
current_height, current_width = image.shape[:2]
|
207 |
+
|
208 |
+
# Calculate new dimensions
|
209 |
+
new_width = int(current_width * scale_factor)
|
210 |
+
new_height = int(current_height * scale_factor)
|
211 |
+
|
212 |
+
# Choose interpolation method based on whether we're scaling up or down
|
213 |
+
interpolation = cv2.INTER_AREA if scale_factor < 1 else cv2.INTER_CUBIC
|
214 |
+
|
215 |
+
# Resize image
|
216 |
+
resized_image = cv2.resize(
|
217 |
+
image, (new_width, new_height), interpolation=interpolation
|
218 |
+
)
|
219 |
+
|
220 |
+
return resized_image
|
221 |
+
|
222 |
+
|
223 |
+
def detect_reference_square(img) -> np.ndarray:
|
224 |
+
box_detector = YOLO("./last.pt")
|
225 |
+
res = box_detector.predict(img)
|
226 |
+
del box_detector
|
227 |
+
return save_one_box(res[0].cpu().boxes.xyxy, res[0].orig_img, save=False), res[0].cpu().boxes.xyxy[0
|
228 |
+
]
|
229 |
+
|
230 |
+
def predict(image):
|
231 |
+
drawer_img = yolo_detect(image, ["box"])
|
232 |
+
shrunked_img = shrink_bbox(drawer_img, 0.8)
|
233 |
+
# Detect the scaling reference square
|
234 |
+
reference_obj_img, scaling_box_coords = detect_reference_square(shrunked_img)
|
235 |
+
reference_obj_img_scaled = shrink_bbox(reference_obj_img, 1.2)
|
236 |
+
try:
|
237 |
+
scaling_factor = calculate_scaling_factor(
|
238 |
+
reference_image_path="./Reference_ScalingBox.jpg",
|
239 |
+
target_image=reference_obj_img_scaled,
|
240 |
+
feature_detector="SIFT",
|
241 |
+
)
|
242 |
+
except:
|
243 |
+
scaling_factor = 1.0
|
244 |
+
# Save original size before `remove_bg` processing
|
245 |
+
orig_size = shrunked_img.shape[:2]
|
246 |
+
# Generate foreground mask and save its size
|
247 |
+
objects_mask = remove_bg(shrunked_img)
|
248 |
+
processed_size = objects_mask.shape[:2]
|
249 |
+
# Exclude scaling box region from objects mask
|
250 |
+
objects_mask = exclude_scaling_box(
|
251 |
+
objects_mask, scaling_box_coords, orig_size, processed_size, expansion_factor=3.0
|
252 |
+
)
|
253 |
+
# Scale the object mask according to scaling factor
|
254 |
+
# objects_mask_scaled = scale_image(objects_mask, scaling_factor)
|
255 |
+
Image.fromarray(objects_mask).save("./outputs/scaled_mask_new.jpg")
|
256 |
+
outlines, contours = extract_outlines(objects_mask)
|
257 |
+
dxf = to_dxf(contours)
|
258 |
+
|
259 |
+
return outlines, dxf, objects_mask, scaling_factor, reference_obj_img_scaled
|
260 |
+
|
261 |
+
|
262 |
+
|
263 |
+
if __name__ == "__main__":
|
264 |
+
os.makedirs("./outputs", exist_ok=True)
|
265 |
+
|
266 |
+
ifer = gr.Interface(
|
267 |
+
fn=predict,
|
268 |
+
inputs=[gr.Image(label="Input Image")],
|
269 |
+
outputs=[
|
270 |
+
gr.Image(label="Ouput Image"),
|
271 |
+
gr.File(label="DXF file"),
|
272 |
+
gr.Image(label="Mask"),
|
273 |
+
gr.Textbox(label="Scaling Factor(mm)", placeholder="Every pixel is equal to mentioned number in mm(milimeter)"),
|
274 |
+
gr.Image(label="Image used for calculating scaling factor")
|
275 |
+
],
|
276 |
+
examples=["./examples/Test20.jpg", "./examples/Test21.jpg", "./examples/Test22.jpg", "./examples/Test23.jpg"]
|
277 |
+
)
|
278 |
+
ifer.launch(share=True)
|
279 |
+
|
examples/Test20.jpg
ADDED
Git LFS Details
|
examples/Test21.jpg
ADDED
Git LFS Details
|
examples/Test22.jpg
ADDED
Git LFS Details
|
examples/Test23.jpg
ADDED
Git LFS Details
|
last.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8ecf93886616e47bcbd997c9149521eab864aea3c4fa9ff48a95ab23d8ecf51e
|
3 |
+
size 6254691
|
outputs/out.dxf
ADDED
outputs/scaled_mask_new.jpg
ADDED
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
ultralytics
|
3 |
+
ezdxf
|
4 |
+
gradio
|
5 |
+
kornia
|
6 |
+
timm
|
scalingtestupdated.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import os
|
4 |
+
import argparse
|
5 |
+
from typing import Union
|
6 |
+
from matplotlib import pyplot as plt
|
7 |
+
|
8 |
+
|
9 |
+
class ScalingSquareDetector:
|
10 |
+
def __init__(self, feature_detector="ORB", debug=False):
|
11 |
+
"""
|
12 |
+
Initialize the detector with the desired feature matching algorithm.
|
13 |
+
:param feature_detector: "ORB" or "SIFT" (default is "ORB").
|
14 |
+
:param debug: If True, saves intermediate images for debugging.
|
15 |
+
"""
|
16 |
+
self.feature_detector = feature_detector
|
17 |
+
self.debug = debug
|
18 |
+
self.detector = self._initialize_detector()
|
19 |
+
|
20 |
+
def _initialize_detector(self):
|
21 |
+
"""
|
22 |
+
Initialize the chosen feature detector.
|
23 |
+
:return: OpenCV detector object.
|
24 |
+
"""
|
25 |
+
if self.feature_detector.upper() == "SIFT":
|
26 |
+
return cv2.SIFT_create()
|
27 |
+
elif self.feature_detector.upper() == "ORB":
|
28 |
+
return cv2.ORB_create()
|
29 |
+
else:
|
30 |
+
raise ValueError("Invalid feature detector. Choose 'ORB' or 'SIFT'.")
|
31 |
+
|
32 |
+
def find_scaling_square(
|
33 |
+
self, reference_image_path, target_image, known_size_mm, roi_margin=30
|
34 |
+
):
|
35 |
+
"""
|
36 |
+
Detect the scaling square in the target image based on the reference image.
|
37 |
+
:param reference_image_path: Path to the reference image of the square.
|
38 |
+
:param target_image_path: Path to the target image containing the square.
|
39 |
+
:param known_size_mm: Physical size of the square in millimeters.
|
40 |
+
:param roi_margin: Margin to expand the ROI around the detected square (in pixels).
|
41 |
+
:return: Scaling factor (mm per pixel).
|
42 |
+
"""
|
43 |
+
target_image = cv2.cvtColor(target_image, cv2.COLOR_RGB2GRAY)
|
44 |
+
|
45 |
+
roi = target_image.copy()
|
46 |
+
# Find contours in the ROI
|
47 |
+
roi_blurred = cv2.GaussianBlur(roi, (5, 5), 0)
|
48 |
+
_, roi_binary = cv2.threshold(
|
49 |
+
roi_blurred, 128, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU
|
50 |
+
)
|
51 |
+
contours, _ = cv2.findContours(
|
52 |
+
roi_binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
|
53 |
+
)
|
54 |
+
|
55 |
+
if not contours:
|
56 |
+
raise ValueError("No contours found in the cropped ROI.")
|
57 |
+
|
58 |
+
# Select the largest square-like contour
|
59 |
+
largest_square = None
|
60 |
+
largest_square_area = 0
|
61 |
+
for contour in contours:
|
62 |
+
x_c, y_c, w_c, h_c = cv2.boundingRect(contour)
|
63 |
+
aspect_ratio = w_c / float(h_c)
|
64 |
+
if 0.9 <= aspect_ratio <= 1.1:
|
65 |
+
peri = cv2.arcLength(contour, True)
|
66 |
+
approx = cv2.approxPolyDP(contour, 0.02 * peri, True)
|
67 |
+
if len(approx) == 4:
|
68 |
+
area = cv2.contourArea(contour)
|
69 |
+
if area > largest_square_area:
|
70 |
+
largest_square = contour
|
71 |
+
largest_square_area = area
|
72 |
+
|
73 |
+
if largest_square is None:
|
74 |
+
raise ValueError("No square-like contour found in the ROI.")
|
75 |
+
|
76 |
+
# Draw the largest contour on the original image
|
77 |
+
target_image_color = cv2.cvtColor(target_image, cv2.COLOR_GRAY2BGR)
|
78 |
+
cv2.drawContours(
|
79 |
+
target_image_color, largest_square, -1, (255, 0, 0), 3
|
80 |
+
)
|
81 |
+
|
82 |
+
if self.debug:
|
83 |
+
cv2.imwrite("largest_contour.jpg", target_image_color)
|
84 |
+
|
85 |
+
# Calculate the bounding rectangle of the largest contour
|
86 |
+
x, y, w, h = cv2.boundingRect(largest_square)
|
87 |
+
square_width_px = w
|
88 |
+
square_height_px = h
|
89 |
+
|
90 |
+
# Calculate the scaling factor
|
91 |
+
avg_square_size_px = (square_width_px + square_height_px) / 2
|
92 |
+
scaling_factor = known_size_mm / avg_square_size_px # mm per pixel
|
93 |
+
|
94 |
+
return scaling_factor
|
95 |
+
|
96 |
+
def draw_debug_images(self, output_folder):
|
97 |
+
"""
|
98 |
+
Save debug images if enabled.
|
99 |
+
:param output_folder: Directory to save debug images.
|
100 |
+
"""
|
101 |
+
if self.debug:
|
102 |
+
if not os.path.exists(output_folder):
|
103 |
+
os.makedirs(output_folder)
|
104 |
+
debug_images = ["largest_contour.jpg"]
|
105 |
+
for img_name in debug_images:
|
106 |
+
if os.path.exists(img_name):
|
107 |
+
os.rename(img_name, os.path.join(output_folder, img_name))
|
108 |
+
|
109 |
+
|
110 |
+
def calculate_scaling_factor(
|
111 |
+
reference_image_path,
|
112 |
+
target_image,
|
113 |
+
known_square_size_mm=9.0,
|
114 |
+
feature_detector="ORB",
|
115 |
+
debug=False,
|
116 |
+
roi_margin=30,
|
117 |
+
):
|
118 |
+
# Initialize detector
|
119 |
+
detector = ScalingSquareDetector(feature_detector=feature_detector, debug=debug)
|
120 |
+
|
121 |
+
# Find scaling square and calculate scaling factor
|
122 |
+
scaling_factor = detector.find_scaling_square(
|
123 |
+
reference_image_path=reference_image_path,
|
124 |
+
target_image=target_image,
|
125 |
+
known_size_mm=known_square_size_mm,
|
126 |
+
roi_margin=roi_margin,
|
127 |
+
)
|
128 |
+
|
129 |
+
# Save debug images
|
130 |
+
if debug:
|
131 |
+
detector.draw_debug_images("debug_outputs")
|
132 |
+
|
133 |
+
return scaling_factor
|
134 |
+
|
135 |
+
|
136 |
+
# Example usage:
|
137 |
+
if __name__ == "__main__":
|
138 |
+
import os
|
139 |
+
from PIL import Image
|
140 |
+
from ultralytics import YOLO
|
141 |
+
from app import yolo_detect, shrink_bbox
|
142 |
+
from ultralytics.utils.plotting import save_one_box
|
143 |
+
|
144 |
+
for idx, file in enumerate(os.listdir("./sample_images")):
|
145 |
+
img = np.array(Image.open(os.path.join("./sample_images", file)))
|
146 |
+
img = yolo_detect(img, ['box'])
|
147 |
+
model = YOLO("./runs/detect/train/weights/last.pt")
|
148 |
+
res = model.predict(img, conf=0.6)
|
149 |
+
|
150 |
+
box_img = save_one_box(res[0].cpu().boxes.xyxy, im=res[0].orig_img, save=False)
|
151 |
+
img = shrink_bbox(box_img, 1.20)
|
152 |
+
cv2.imwrite(f"./outputs/{idx}_{file}", img)
|
153 |
+
try:
|
154 |
+
|
155 |
+
scaling_factor = calculate_scaling_factor(
|
156 |
+
reference_image_path="./Reference_ScalingBox.jpg",
|
157 |
+
target_image=img,
|
158 |
+
known_square_size_mm=9.0,
|
159 |
+
feature_detector="ORB",
|
160 |
+
debug=False,
|
161 |
+
roi_margin=90,
|
162 |
+
)
|
163 |
+
print(f"Scaling Factor (mm per pixel): {scaling_factor:.6f}")
|
164 |
+
except Exception as e:
|
165 |
+
from traceback import print_exc
|
166 |
+
print(print_exc())
|
167 |
+
print(f"Error: {e}")
|