Spaces:
Running
Running
umairahmad1789
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,7 @@ import os
|
|
2 |
from pathlib import Path
|
3 |
from typing import List, Union
|
4 |
from PIL import Image
|
|
|
5 |
import numpy as np
|
6 |
import torch
|
7 |
from torchvision import transforms
|
@@ -14,7 +15,25 @@ import ezdxf
|
|
14 |
import gradio as gr
|
15 |
import gc
|
16 |
from scalingtestupdated import calculate_scaling_factor
|
|
|
|
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
|
20 |
def yolo_detect(
|
@@ -36,23 +55,6 @@ def yolo_detect(
|
|
36 |
|
37 |
|
38 |
def remove_bg(image: np.ndarray) -> np.ndarray:
|
39 |
-
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
40 |
-
"zhengpeng7/BiRefNet", trust_remote_code=True
|
41 |
-
)
|
42 |
-
|
43 |
-
device = "cpu"
|
44 |
-
torch.set_float32_matmul_precision(["high", "highest"][0])
|
45 |
-
|
46 |
-
birefnet.to(device)
|
47 |
-
birefnet.eval()
|
48 |
-
transform_image = transforms.Compose(
|
49 |
-
[
|
50 |
-
transforms.Resize((1024, 1024)),
|
51 |
-
transforms.ToTensor(),
|
52 |
-
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
53 |
-
]
|
54 |
-
)
|
55 |
-
|
56 |
image = Image.fromarray(image)
|
57 |
input_images = transform_image(image).unsqueeze(0).to("cpu")
|
58 |
|
@@ -62,16 +64,62 @@ def remove_bg(image: np.ndarray) -> np.ndarray:
|
|
62 |
pred = preds[0].squeeze()
|
63 |
|
64 |
# Show Results
|
65 |
-
pred_pil = transforms.ToPILImage()(pred)
|
|
|
66 |
# Scale proportionally with max length to 1024 for faster showing
|
67 |
scale_ratio = 1024 / max(image.size)
|
68 |
scaled_size = (int(image.size[0] * scale_ratio), int(image.size[1] * scale_ratio))
|
69 |
-
|
70 |
-
del birefnet
|
71 |
|
72 |
return np.array(pred_pil.resize(scaled_size))
|
73 |
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
# Unpack the bounding box
|
76 |
x_min, y_min, x_max, y_max = map(int, bbox)
|
77 |
|
@@ -89,9 +137,13 @@ def exclude_scaling_box(image: np.ndarray, bbox: np.ndarray, orig_size: tuple, p
|
|
89 |
box_width = x_max - x_min
|
90 |
box_height = y_max - y_min
|
91 |
expanded_x_min = max(0, int(x_min - (expansion_factor - 1) * box_width / 2))
|
92 |
-
expanded_x_max = min(
|
|
|
|
|
93 |
expanded_y_min = max(0, int(y_min - (expansion_factor - 1) * box_height / 2))
|
94 |
-
expanded_y_max = min(
|
|
|
|
|
95 |
|
96 |
# Black out the expanded region
|
97 |
image[expanded_y_min:expanded_y_max, expanded_x_min:expanded_x_max] = 0
|
@@ -99,6 +151,61 @@ def exclude_scaling_box(image: np.ndarray, bbox: np.ndarray, orig_size: tuple, p
|
|
99 |
return image
|
100 |
|
101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
def extract_outlines(binary_image: np.ndarray) -> np.ndarray:
|
103 |
"""
|
104 |
Extracts and draws the outlines of masks from a binary image.
|
@@ -109,26 +216,21 @@ def extract_outlines(binary_image: np.ndarray) -> np.ndarray:
|
|
109 |
"""
|
110 |
# Detect contours from the binary image
|
111 |
contours, _ = cv2.findContours(
|
112 |
-
binary_image, cv2.RETR_EXTERNAL, cv2.
|
113 |
)
|
114 |
|
|
|
|
|
|
|
115 |
# Create a blank image to draw contours
|
116 |
outline_image = np.zeros_like(binary_image)
|
117 |
-
# Smooth the contours
|
118 |
-
smoothed_contours = []
|
119 |
-
for contour in contours:
|
120 |
-
# Calculate epsilon for approxPolyDP
|
121 |
-
epsilon = 0.002 * cv2.arcLength(contour, True)
|
122 |
-
# Approximate the contour with fewer points
|
123 |
-
smoothed_contour = cv2.approxPolyDP(contour, epsilon, True)
|
124 |
-
smoothed_contours.append(smoothed_contour)
|
125 |
|
126 |
# Draw the contours on the blank image
|
127 |
cv2.drawContours(
|
128 |
-
outline_image,
|
129 |
) # White color for outlines
|
130 |
|
131 |
-
return cv2.bitwise_not(outline_image),
|
132 |
|
133 |
|
134 |
def shrink_bbox(image: np.ndarray, shrink_factor: float):
|
@@ -162,7 +264,7 @@ def shrink_bbox(image: np.ndarray, shrink_factor: float):
|
|
162 |
# lower_range_tuple = (0)
|
163 |
|
164 |
# doc = ezdxf.new('R2010')
|
165 |
-
# msp = doc.modelspace()
|
166 |
# masked_jpg = cv2.inRange(outlines,lower_range_tuple, upper_range_tuple)
|
167 |
|
168 |
# for i in range(0,masked_jpg.shape[0]):
|
@@ -173,6 +275,7 @@ def shrink_bbox(image: np.ndarray, shrink_factor: float):
|
|
173 |
# doc.saveas("./outputs/out.dxf")
|
174 |
# return "./outputs/out.dxf"
|
175 |
|
|
|
176 |
def to_dxf(contours):
|
177 |
doc = ezdxf.new()
|
178 |
msp = doc.modelspace()
|
@@ -180,10 +283,11 @@ def to_dxf(contours):
|
|
180 |
for contour in contours:
|
181 |
points = [(point[0][0], point[0][1]) for point in contour]
|
182 |
msp.add_lwpolyline(points, close=True) # Add a polyline for each contour
|
183 |
-
|
184 |
doc.saveas("./outputs/out.dxf")
|
185 |
return "./outputs/out.dxf"
|
186 |
|
|
|
187 |
def smooth_contours(contour):
|
188 |
epsilon = 0.01 * cv2.arcLength(contour, True) # Adjust factor (e.g., 0.01)
|
189 |
return cv2.approxPolyDP(contour, epsilon, True)
|
@@ -224,40 +328,68 @@ def detect_reference_square(img) -> np.ndarray:
|
|
224 |
box_detector = YOLO("./last.pt")
|
225 |
res = box_detector.predict(img)
|
226 |
del box_detector
|
227 |
-
return save_one_box(res[0].cpu().boxes.xyxy, res[0].orig_img, save=False), res[
|
228 |
-
|
|
|
229 |
|
230 |
-
|
|
|
|
|
|
|
|
|
|
|
231 |
drawer_img = yolo_detect(image, ["box"])
|
232 |
-
shrunked_img = shrink_bbox(drawer_img, 0.8)
|
233 |
# Detect the scaling reference square
|
234 |
reference_obj_img, scaling_box_coords = detect_reference_square(shrunked_img)
|
235 |
-
reference_obj_img_scaled = shrink_bbox(reference_obj_img, 1.2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
236 |
try:
|
237 |
scaling_factor = calculate_scaling_factor(
|
238 |
reference_image_path="./Reference_ScalingBox.jpg",
|
239 |
-
target_image=
|
240 |
-
feature_detector="
|
241 |
)
|
242 |
except:
|
243 |
scaling_factor = 1.0
|
|
|
244 |
# Save original size before `remove_bg` processing
|
245 |
orig_size = shrunked_img.shape[:2]
|
246 |
# Generate foreground mask and save its size
|
247 |
objects_mask = remove_bg(shrunked_img)
|
|
|
248 |
processed_size = objects_mask.shape[:2]
|
249 |
# Exclude scaling box region from objects mask
|
250 |
objects_mask = exclude_scaling_box(
|
251 |
-
objects_mask,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
252 |
)
|
253 |
-
# Scale the object mask according to scaling factor
|
254 |
-
objects_mask_scaled = scale_image(objects_mask, scaling_factor)
|
255 |
-
Image.fromarray(objects_mask_scaled).save("./outputs/scaled_mask_new.jpg")
|
256 |
-
outlines, contours = extract_outlines(objects_mask_scaled)
|
257 |
-
dxf = to_dxf(contours)
|
258 |
|
259 |
-
|
|
|
|
|
|
|
|
|
260 |
|
|
|
261 |
|
262 |
|
263 |
if __name__ == "__main__":
|
@@ -265,15 +397,22 @@ if __name__ == "__main__":
|
|
265 |
|
266 |
ifer = gr.Interface(
|
267 |
fn=predict,
|
268 |
-
inputs=[gr.Image(label="Input Image")],
|
269 |
outputs=[
|
270 |
gr.Image(label="Ouput Image"),
|
271 |
gr.File(label="DXF file"),
|
272 |
gr.Image(label="Mask"),
|
273 |
-
gr.Textbox(
|
274 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
275 |
],
|
276 |
-
examples=["./examples/Test20.jpg", "./examples/Test21.jpg", "./examples/Test22.jpg", "./examples/Test23.jpg"]
|
277 |
)
|
278 |
ifer.launch(share=True)
|
279 |
-
|
|
|
2 |
from pathlib import Path
|
3 |
from typing import List, Union
|
4 |
from PIL import Image
|
5 |
+
import ezdxf.units
|
6 |
import numpy as np
|
7 |
import torch
|
8 |
from torchvision import transforms
|
|
|
15 |
import gradio as gr
|
16 |
import gc
|
17 |
from scalingtestupdated import calculate_scaling_factor
|
18 |
+
from scipy.interpolate import splprep, splev
|
19 |
+
from scipy.ndimage import gaussian_filter1d
|
20 |
|
21 |
+
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
22 |
+
"zhengpeng7/BiRefNet", trust_remote_code=True
|
23 |
+
)
|
24 |
+
|
25 |
+
device = "cpu"
|
26 |
+
torch.set_float32_matmul_precision(["high", "highest"][0])
|
27 |
+
|
28 |
+
birefnet.to(device)
|
29 |
+
birefnet.eval()
|
30 |
+
transform_image = transforms.Compose(
|
31 |
+
[
|
32 |
+
transforms.Resize((1024, 1024)),
|
33 |
+
transforms.ToTensor(),
|
34 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
35 |
+
]
|
36 |
+
)
|
37 |
|
38 |
|
39 |
def yolo_detect(
|
|
|
55 |
|
56 |
|
57 |
def remove_bg(image: np.ndarray) -> np.ndarray:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
image = Image.fromarray(image)
|
59 |
input_images = transform_image(image).unsqueeze(0).to("cpu")
|
60 |
|
|
|
64 |
pred = preds[0].squeeze()
|
65 |
|
66 |
# Show Results
|
67 |
+
pred_pil: Image = transforms.ToPILImage()(pred)
|
68 |
+
print(pred_pil)
|
69 |
# Scale proportionally with max length to 1024 for faster showing
|
70 |
scale_ratio = 1024 / max(image.size)
|
71 |
scaled_size = (int(image.size[0] * scale_ratio), int(image.size[1] * scale_ratio))
|
|
|
|
|
72 |
|
73 |
return np.array(pred_pil.resize(scaled_size))
|
74 |
|
75 |
+
|
76 |
+
def make_square(img: np.ndarray):
|
77 |
+
# Get dimensions
|
78 |
+
height, width = img.shape[:2]
|
79 |
+
|
80 |
+
# Find the larger dimension
|
81 |
+
max_dim = max(height, width)
|
82 |
+
|
83 |
+
# Calculate padding
|
84 |
+
pad_height = (max_dim - height) // 2
|
85 |
+
pad_width = (max_dim - width) // 2
|
86 |
+
|
87 |
+
# Handle odd dimensions
|
88 |
+
pad_height_extra = max_dim - height - 2 * pad_height
|
89 |
+
pad_width_extra = max_dim - width - 2 * pad_width
|
90 |
+
|
91 |
+
# Create padding with edge colors
|
92 |
+
if len(img.shape) == 3: # Color image
|
93 |
+
# Pad the image
|
94 |
+
padded = np.pad(
|
95 |
+
img,
|
96 |
+
(
|
97 |
+
(pad_height, pad_height + pad_height_extra),
|
98 |
+
(pad_width, pad_width + pad_width_extra),
|
99 |
+
(0, 0),
|
100 |
+
),
|
101 |
+
mode="edge",
|
102 |
+
)
|
103 |
+
else: # Grayscale image
|
104 |
+
padded = np.pad(
|
105 |
+
img,
|
106 |
+
(
|
107 |
+
(pad_height, pad_height + pad_height_extra),
|
108 |
+
(pad_width, pad_width + pad_width_extra),
|
109 |
+
),
|
110 |
+
mode="edge",
|
111 |
+
)
|
112 |
+
|
113 |
+
return padded
|
114 |
+
|
115 |
+
|
116 |
+
def exclude_scaling_box(
|
117 |
+
image: np.ndarray,
|
118 |
+
bbox: np.ndarray,
|
119 |
+
orig_size: tuple,
|
120 |
+
processed_size: tuple,
|
121 |
+
expansion_factor: float = 1.5,
|
122 |
+
) -> np.ndarray:
|
123 |
# Unpack the bounding box
|
124 |
x_min, y_min, x_max, y_max = map(int, bbox)
|
125 |
|
|
|
137 |
box_width = x_max - x_min
|
138 |
box_height = y_max - y_min
|
139 |
expanded_x_min = max(0, int(x_min - (expansion_factor - 1) * box_width / 2))
|
140 |
+
expanded_x_max = min(
|
141 |
+
image.shape[1], int(x_max + (expansion_factor - 1) * box_width / 2)
|
142 |
+
)
|
143 |
expanded_y_min = max(0, int(y_min - (expansion_factor - 1) * box_height / 2))
|
144 |
+
expanded_y_max = min(
|
145 |
+
image.shape[0], int(y_max + (expansion_factor - 1) * box_height / 2)
|
146 |
+
)
|
147 |
|
148 |
# Black out the expanded region
|
149 |
image[expanded_y_min:expanded_y_max, expanded_x_min:expanded_x_max] = 0
|
|
|
151 |
return image
|
152 |
|
153 |
|
154 |
+
def resample_contour(contour):
|
155 |
+
# ---------------------------------------------------------------------------------------- #
|
156 |
+
# Get all the parameters at the start:
|
157 |
+
num_points = 1000
|
158 |
+
smoothing_factor = 5
|
159 |
+
|
160 |
+
smoothed_x_sigma = 1
|
161 |
+
smoothed_y_sigma = 1
|
162 |
+
# ---------------------------------------------------------------------------------------- #
|
163 |
+
contour = contour[:, 0, :]
|
164 |
+
|
165 |
+
tck, _ = splprep([contour[:, 0], contour[:, 1]], s=smoothing_factor)
|
166 |
+
|
167 |
+
u = np.linspace(0, 1, num_points)
|
168 |
+
resampled_points = splev(u, tck)
|
169 |
+
|
170 |
+
smoothed_x = gaussian_filter1d(resampled_points[0], sigma=smoothed_x_sigma)
|
171 |
+
smoothed_y = gaussian_filter1d(resampled_points[1], sigma=smoothed_y_sigma)
|
172 |
+
|
173 |
+
return np.array([smoothed_x, smoothed_y]).T
|
174 |
+
|
175 |
+
|
176 |
+
def save_dxf_spline(inflated_contours, scaling_factor, height):
|
177 |
+
# ---------------------------------------------------------------------------------------- #
|
178 |
+
# Get all the parameters at the start:
|
179 |
+
degree = 3
|
180 |
+
closed = True
|
181 |
+
# ---------------------------------------------------------------------------------------- #
|
182 |
+
|
183 |
+
doc = ezdxf.new(units=0)
|
184 |
+
doc.units = ezdxf.units.IN
|
185 |
+
doc.header['$INSUNITS'] = ezdxf.units.IN
|
186 |
+
|
187 |
+
msp = doc.modelspace()
|
188 |
+
|
189 |
+
for contour in inflated_contours:
|
190 |
+
resampled_contour = resample_contour(contour)
|
191 |
+
points = [
|
192 |
+
(x * scaling_factor, (height - y)* scaling_factor)
|
193 |
+
for x, y in resampled_contour
|
194 |
+
]
|
195 |
+
if len(points) >= 3:
|
196 |
+
# Manually Closing the Contour in case it hasn't been closed by the contours before.
|
197 |
+
if np.linalg.norm(np.array(points[0]) - np.array(points[-1])) > 1e-2:
|
198 |
+
points.append(points[0])
|
199 |
+
|
200 |
+
spline = msp.add_spline(points, degree=degree)
|
201 |
+
spline.closed = closed
|
202 |
+
|
203 |
+
# Step 14: Save the DXF file
|
204 |
+
dxf_filepath = os.path.join("./outputs", "out.dxf")
|
205 |
+
doc.saveas(dxf_filepath)
|
206 |
+
return dxf_filepath
|
207 |
+
|
208 |
+
|
209 |
def extract_outlines(binary_image: np.ndarray) -> np.ndarray:
|
210 |
"""
|
211 |
Extracts and draws the outlines of masks from a binary image.
|
|
|
216 |
"""
|
217 |
# Detect contours from the binary image
|
218 |
contours, _ = cv2.findContours(
|
219 |
+
binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
|
220 |
)
|
221 |
|
222 |
+
# smooth_contours_list = []
|
223 |
+
# for contour in contours:
|
224 |
+
# smooth_contours_list.append(smooth_contours(contour))
|
225 |
# Create a blank image to draw contours
|
226 |
outline_image = np.zeros_like(binary_image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
|
228 |
# Draw the contours on the blank image
|
229 |
cv2.drawContours(
|
230 |
+
outline_image, contours, -1, (255), thickness=1
|
231 |
) # White color for outlines
|
232 |
|
233 |
+
return cv2.bitwise_not(outline_image), contours
|
234 |
|
235 |
|
236 |
def shrink_bbox(image: np.ndarray, shrink_factor: float):
|
|
|
264 |
# lower_range_tuple = (0)
|
265 |
|
266 |
# doc = ezdxf.new('R2010')
|
267 |
+
# msp = doc.modelspace()
|
268 |
# masked_jpg = cv2.inRange(outlines,lower_range_tuple, upper_range_tuple)
|
269 |
|
270 |
# for i in range(0,masked_jpg.shape[0]):
|
|
|
275 |
# doc.saveas("./outputs/out.dxf")
|
276 |
# return "./outputs/out.dxf"
|
277 |
|
278 |
+
|
279 |
def to_dxf(contours):
|
280 |
doc = ezdxf.new()
|
281 |
msp = doc.modelspace()
|
|
|
283 |
for contour in contours:
|
284 |
points = [(point[0][0], point[0][1]) for point in contour]
|
285 |
msp.add_lwpolyline(points, close=True) # Add a polyline for each contour
|
286 |
+
|
287 |
doc.saveas("./outputs/out.dxf")
|
288 |
return "./outputs/out.dxf"
|
289 |
|
290 |
+
|
291 |
def smooth_contours(contour):
|
292 |
epsilon = 0.01 * cv2.arcLength(contour, True) # Adjust factor (e.g., 0.01)
|
293 |
return cv2.approxPolyDP(contour, epsilon, True)
|
|
|
328 |
box_detector = YOLO("./last.pt")
|
329 |
res = box_detector.predict(img)
|
330 |
del box_detector
|
331 |
+
return save_one_box(res[0].cpu().boxes.xyxy, res[0].orig_img, save=False), res[
|
332 |
+
0
|
333 |
+
].cpu().boxes.xyxy[0]
|
334 |
|
335 |
+
|
336 |
+
def resize_img(img: np.ndarray, resize_dim):
|
337 |
+
return np.array(Image.fromarray(img).resize(resize_dim))
|
338 |
+
|
339 |
+
|
340 |
+
def predict(image, offset_inches):
|
341 |
drawer_img = yolo_detect(image, ["box"])
|
342 |
+
shrunked_img = make_square(shrink_bbox(drawer_img, 0.8))
|
343 |
# Detect the scaling reference square
|
344 |
reference_obj_img, scaling_box_coords = detect_reference_square(shrunked_img)
|
345 |
+
# reference_obj_img_scaled = shrink_bbox(reference_obj_img, 1.2)
|
346 |
+
# make the image sqaure so it does not effect the size of objects
|
347 |
+
reference_obj_img = make_square(reference_obj_img)
|
348 |
+
reference_square_mask = remove_bg(reference_obj_img)
|
349 |
+
|
350 |
+
# make the mask same size as org image
|
351 |
+
reference_square_mask = resize_img(
|
352 |
+
reference_square_mask, (reference_obj_img.shape[1], reference_obj_img.shape[0])
|
353 |
+
)
|
354 |
+
|
355 |
try:
|
356 |
scaling_factor = calculate_scaling_factor(
|
357 |
reference_image_path="./Reference_ScalingBox.jpg",
|
358 |
+
target_image=reference_square_mask,
|
359 |
+
feature_detector="ORB",
|
360 |
)
|
361 |
except:
|
362 |
scaling_factor = 1.0
|
363 |
+
|
364 |
# Save original size before `remove_bg` processing
|
365 |
orig_size = shrunked_img.shape[:2]
|
366 |
# Generate foreground mask and save its size
|
367 |
objects_mask = remove_bg(shrunked_img)
|
368 |
+
|
369 |
processed_size = objects_mask.shape[:2]
|
370 |
# Exclude scaling box region from objects mask
|
371 |
objects_mask = exclude_scaling_box(
|
372 |
+
objects_mask,
|
373 |
+
scaling_box_coords,
|
374 |
+
orig_size,
|
375 |
+
processed_size,
|
376 |
+
expansion_factor=3.0,
|
377 |
+
)
|
378 |
+
objects_mask = resize_img(
|
379 |
+
objects_mask, (shrunked_img.shape[1], shrunked_img.shape[0])
|
380 |
+
)
|
381 |
+
offset_pixels = offset_inches / scaling_factor
|
382 |
+
dilated_mask = cv2.dilate(
|
383 |
+
objects_mask, np.ones((int(offset_pixels), int(offset_pixels)), np.uint8)
|
384 |
)
|
|
|
|
|
|
|
|
|
|
|
385 |
|
386 |
+
# Scale the object mask according to scaling factor
|
387 |
+
# objects_mask_scaled = scale_image(objects_mask, scaling_factor)
|
388 |
+
Image.fromarray(dilated_mask).save("./outputs/scaled_mask_new.jpg")
|
389 |
+
outlines, contours = extract_outlines(dilated_mask)
|
390 |
+
dxf = save_dxf_spline(contours, scaling_factor, processed_size[0])
|
391 |
|
392 |
+
return outlines, dxf, dilated_mask, scaling_factor, reference_obj_img
|
393 |
|
394 |
|
395 |
if __name__ == "__main__":
|
|
|
397 |
|
398 |
ifer = gr.Interface(
|
399 |
fn=predict,
|
400 |
+
inputs=[gr.Image(label="Input Image"), gr.Number(label="Offset value for Mask(inches)", value=0.075)],
|
401 |
outputs=[
|
402 |
gr.Image(label="Ouput Image"),
|
403 |
gr.File(label="DXF file"),
|
404 |
gr.Image(label="Mask"),
|
405 |
+
gr.Textbox(
|
406 |
+
label="Scaling Factor(mm)",
|
407 |
+
placeholder="Every pixel is equal to mentioned number in mm(milimeter)",
|
408 |
+
),
|
409 |
+
gr.Image(label="Image used for calculating scaling factor"),
|
410 |
+
],
|
411 |
+
examples=[
|
412 |
+
["./examples/Test20.jpg", 0.075],
|
413 |
+
["./examples/Test21.jpg", 0.075],
|
414 |
+
["./examples/Test22.jpg", 0.075],
|
415 |
+
["./examples/Test23.jpg", 0.075],
|
416 |
],
|
|
|
417 |
)
|
418 |
ifer.launch(share=True)
|
|