import os from pathlib import Path from typing import List, Union from PIL import Image import ezdxf.units import numpy as np import torch from torchvision import transforms from ultralytics import YOLOWorld, YOLO from ultralytics.engine.results import Results from ultralytics.utils.plotting import save_one_box from transformers import AutoModelForImageSegmentation import cv2 import ezdxf import gradio as gr import gc from scalingtestupdated import calculate_scaling_factor from scipy.interpolate import splprep, splev from scipy.ndimage import gaussian_filter1d birefnet = AutoModelForImageSegmentation.from_pretrained( "zhengpeng7/BiRefNet", trust_remote_code=True ) device = "cpu" torch.set_float32_matmul_precision(["high", "highest"][0]) birefnet.to(device) birefnet.eval() transform_image = transforms.Compose( [ transforms.Resize((1024, 1024)), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ] ) def yolo_detect( image: Union[str, Path, int, Image.Image, list, tuple, np.ndarray, torch.Tensor], classes: List[str], ) -> np.ndarray: drawer_detector = YOLOWorld("yolov8x-worldv2.pt") drawer_detector.set_classes(classes) results: List[Results] = drawer_detector.predict(image) boxes = [] for result in results: boxes.append( save_one_box(result.cpu().boxes.xyxy, im=result.orig_img, save=False) ) del drawer_detector return boxes[0] def remove_bg(image: np.ndarray) -> np.ndarray: image = Image.fromarray(image) input_images = transform_image(image).unsqueeze(0).to("cpu") # Prediction with torch.no_grad(): preds = birefnet(input_images)[-1].sigmoid().cpu() pred = preds[0].squeeze() # Show Results pred_pil: Image = transforms.ToPILImage()(pred) print(pred_pil) # Scale proportionally with max length to 1024 for faster showing scale_ratio = 1024 / max(image.size) scaled_size = (int(image.size[0] * scale_ratio), int(image.size[1] * scale_ratio)) return np.array(pred_pil.resize(scaled_size)) def make_square(img: np.ndarray): # Get dimensions height, width = img.shape[:2] # Find the larger dimension max_dim = max(height, width) # Calculate padding pad_height = (max_dim - height) // 2 pad_width = (max_dim - width) // 2 # Handle odd dimensions pad_height_extra = max_dim - height - 2 * pad_height pad_width_extra = max_dim - width - 2 * pad_width # Create padding with edge colors if len(img.shape) == 3: # Color image # Pad the image padded = np.pad( img, ( (pad_height, pad_height + pad_height_extra), (pad_width, pad_width + pad_width_extra), (0, 0), ), mode="edge", ) else: # Grayscale image padded = np.pad( img, ( (pad_height, pad_height + pad_height_extra), (pad_width, pad_width + pad_width_extra), ), mode="edge", ) return padded def exclude_scaling_box( image: np.ndarray, bbox: np.ndarray, orig_size: tuple, processed_size: tuple, expansion_factor: float = 1.5, ) -> np.ndarray: # Unpack the bounding box x_min, y_min, x_max, y_max = map(int, bbox) # Calculate scaling factors scale_x = processed_size[1] / orig_size[1] # Width scale scale_y = processed_size[0] / orig_size[0] # Height scale # Adjust bounding box coordinates x_min = int(x_min * scale_x) x_max = int(x_max * scale_x) y_min = int(y_min * scale_y) y_max = int(y_max * scale_y) # Calculate expanded box coordinates box_width = x_max - x_min box_height = y_max - y_min expanded_x_min = max(0, int(x_min - (expansion_factor - 1) * box_width / 2)) expanded_x_max = min( image.shape[1], int(x_max + (expansion_factor - 1) * box_width / 2) ) expanded_y_min = max(0, int(y_min - (expansion_factor - 1) * box_height / 2)) expanded_y_max = min( image.shape[0], int(y_max + (expansion_factor - 1) * box_height / 2) ) # Black out the expanded region image[expanded_y_min:expanded_y_max, expanded_x_min:expanded_x_max] = 0 return image def resample_contour(contour): # ---------------------------------------------------------------------------------------- # # Get all the parameters at the start: num_points = 1000 smoothing_factor = 5 smoothed_x_sigma = 1 smoothed_y_sigma = 1 # ---------------------------------------------------------------------------------------- # contour = contour[:, 0, :] tck, _ = splprep([contour[:, 0], contour[:, 1]], s=smoothing_factor) u = np.linspace(0, 1, num_points) resampled_points = splev(u, tck) smoothed_x = gaussian_filter1d(resampled_points[0], sigma=smoothed_x_sigma) smoothed_y = gaussian_filter1d(resampled_points[1], sigma=smoothed_y_sigma) return np.array([smoothed_x, smoothed_y]).T def save_dxf_spline(inflated_contours, scaling_factor, height): # ---------------------------------------------------------------------------------------- # # Get all the parameters at the start: degree = 3 closed = True # ---------------------------------------------------------------------------------------- # doc = ezdxf.new(units=0) doc.units = ezdxf.units.IN doc.header["$INSUNITS"] = ezdxf.units.IN msp = doc.modelspace() for contour in inflated_contours: resampled_contour = resample_contour(contour) points = [ (x * scaling_factor, (height - y) * scaling_factor) for x, y in resampled_contour ] if len(points) >= 3: # Manually Closing the Contour in case it hasn't been closed by the contours before. if np.linalg.norm(np.array(points[0]) - np.array(points[-1])) > 1e-2: points.append(points[0]) spline = msp.add_spline(points, degree=degree) spline.closed = closed # Step 14: Save the DXF file dxf_filepath = os.path.join("./outputs", "out.dxf") doc.saveas(dxf_filepath) return dxf_filepath def extract_outlines(binary_image: np.ndarray) -> np.ndarray: """ Extracts and draws the outlines of masks from a binary image. Args: binary_image: Grayscale binary image where white represents masks and black is the background. Returns: Image with outlines drawn. """ # Detect contours from the binary image contours, _ = cv2.findContours( binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE ) # smooth_contours_list = [] # for contour in contours: # smooth_contours_list.append(smooth_contours(contour)) # Create a blank image to draw contours outline_image = np.zeros_like(binary_image) # Draw the contours on the blank image cv2.drawContours( outline_image, contours, -1, (255), thickness=1 ) # White color for outlines return cv2.bitwise_not(outline_image), contours def shrink_bbox(image: np.ndarray, shrink_factor: float): """ Crops the central 80% of the image, maintaining proportions for non-square images. Args: image: Input image as a NumPy array. Returns: Cropped image as a NumPy array. """ height, width = image.shape[:2] center_x, center_y = width // 2, height // 2 # Calculate 80% dimensions new_width = int(width * shrink_factor) new_height = int(height * shrink_factor) # Determine the top-left and bottom-right points for cropping x1 = max(center_x - new_width // 2, 0) y1 = max(center_y - new_height // 2, 0) x2 = min(center_x + new_width // 2, width) y2 = min(center_y + new_height // 2, height) # Crop the image cropped_image = image[y1:y2, x1:x2] return cropped_image # def to_dxf(outlines): # upper_range_tuple = (200) # lower_range_tuple = (0) # doc = ezdxf.new('R2010') # msp = doc.modelspace() # masked_jpg = cv2.inRange(outlines,lower_range_tuple, upper_range_tuple) # for i in range(0,masked_jpg.shape[0]): # for j in range(0,masked_jpg.shape[1]): # if masked_jpg[i][j] == 255: # msp.add_line((j,masked_jpg.shape[0] - i), (j,masked_jpg.shape[0] - i)) # doc.saveas("./outputs/out.dxf") # return "./outputs/out.dxf" def to_dxf(contours): doc = ezdxf.new() msp = doc.modelspace() for contour in contours: points = [(point[0][0], point[0][1]) for point in contour] msp.add_lwpolyline(points, close=True) # Add a polyline for each contour doc.saveas("./outputs/out.dxf") return "./outputs/out.dxf" def smooth_contours(contour): epsilon = 0.01 * cv2.arcLength(contour, True) # Adjust factor (e.g., 0.01) return cv2.approxPolyDP(contour, epsilon, True) def scale_image(image: np.ndarray, scale_factor: float) -> np.ndarray: """ Resize image by scaling both width and height by the same factor. Args: image: Input numpy image scale_factor: Factor to scale the image (e.g., 0.5 for half size, 2 for double size) Returns: np.ndarray: Resized image """ if scale_factor <= 0: raise ValueError("Scale factor must be positive") current_height, current_width = image.shape[:2] # Calculate new dimensions new_width = int(current_width * scale_factor) new_height = int(current_height * scale_factor) # Choose interpolation method based on whether we're scaling up or down interpolation = cv2.INTER_AREA if scale_factor < 1 else cv2.INTER_CUBIC # Resize image resized_image = cv2.resize( image, (new_width, new_height), interpolation=interpolation ) return resized_image def detect_reference_square(img) -> np.ndarray: box_detector = YOLO("./last.pt") res = box_detector.predict(img) del box_detector return save_one_box(res[0].cpu().boxes.xyxy, res[0].orig_img, save=False), res[ 0 ].cpu().boxes.xyxy[0] def resize_img(img: np.ndarray, resize_dim): return np.array(Image.fromarray(img).resize(resize_dim)) def predict(image, offset_inches): try: drawer_img = yolo_detect(image, ["box"]) shrunked_img = make_square(shrink_bbox(drawer_img, 0.8)) except: raise gr.Error("Unable to DETECT DRAWER, please take another picture with different magnification level!") # Detect the scaling reference square try: reference_obj_img, scaling_box_coords = detect_reference_square(shrunked_img) except: raise gr.Error("Unable to DETECT REFERENCE BOX, please take another picture with different magnification level!") # reference_obj_img_scaled = shrink_bbox(reference_obj_img, 1.2) # make the image sqaure so it does not effect the size of objects reference_obj_img = make_square(reference_obj_img) reference_square_mask = remove_bg(reference_obj_img) # make the mask same size as org image reference_square_mask = resize_img( reference_square_mask, (reference_obj_img.shape[1], reference_obj_img.shape[0]) ) try: scaling_factor = calculate_scaling_factor( reference_image_path="./Reference_ScalingBox.jpg", target_image=reference_square_mask, feature_detector="ORB", ) except: scaling_factor = 1.0 # Save original size before `remove_bg` processing orig_size = shrunked_img.shape[:2] # Generate foreground mask and save its size objects_mask = remove_bg(shrunked_img) processed_size = objects_mask.shape[:2] # Exclude scaling box region from objects mask objects_mask = exclude_scaling_box( objects_mask, scaling_box_coords, orig_size, processed_size, expansion_factor=3.0, ) objects_mask = resize_img( objects_mask, (shrunked_img.shape[1], shrunked_img.shape[0]) ) offset_pixels = (offset_inches / scaling_factor) * 2 + 1 dilated_mask = cv2.dilate( objects_mask, np.ones((int(offset_pixels), int(offset_pixels)), np.uint8) ) # Scale the object mask according to scaling factor # objects_mask_scaled = scale_image(objects_mask, scaling_factor) Image.fromarray(dilated_mask).save("./outputs/scaled_mask_new.jpg") outlines, contours = extract_outlines(dilated_mask) shrunked_img_contours = cv2.drawContours( shrunked_img, contours, -1, (0, 0, 255), thickness=2 ) dxf = save_dxf_spline(contours, scaling_factor, processed_size[0]) return ( cv2.cvtColor(shrunked_img_contours, cv2.COLOR_BGR2RGB), outlines, dxf, dilated_mask, scaling_factor, ) if __name__ == "__main__": os.makedirs("./outputs", exist_ok=True) ifer = gr.Interface( fn=predict, inputs=[ gr.Image(label="Input Image"), gr.Number(label="Offset value for Mask(inches)", value=0.075), ], outputs=[ gr.Image(label="Ouput Image"), gr.Image(label="Outlines of Objects"), gr.File(label="DXF file"), gr.Image(label="Mask"), gr.Textbox( label="Scaling Factor(mm)", placeholder="Every pixel is equal to mentioned number in inches", ), ], examples=[ ["./examples/Test20.jpg", 0.075], ["./examples/Test21.jpg", 0.075], ["./examples/Test22.jpg", 0.075], ["./examples/Test23.jpg", 0.075], ], ) ifer.launch(share=True)