Spaces:
Running
Running
File size: 1,945 Bytes
1bc005f eae352c 2ebcb2f eae352c 2ebcb2f b4c7fad 2ebcb2f eae352c 2ebcb2f eae352c 2ebcb2f 6f3669a 2ebcb2f eae352c 2ebcb2f eae352c 2ebcb2f eae352c 2ebcb2f eae352c 2ebcb2f eae352c 1bc005f eae352c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
import numpy as np
import gradio as gr
from PIL import Image
from fast_alpr import ALPR
# Fixed model
DETECTOR_MODEL = "yolo-v9-s-608-license-plate-end2end"
def alpr_inference(image):
if image is None:
return None, "Please upload an image to continue."
img = image.convert("RGB")
img_array = np.array(img)
alpr = ALPR(detector_model=DETECTOR_MODEL)
# Only detect plates, do not perform OCR
results = alpr.predict(img_array) # Use predict() as detect() is not available
# Draw only bounding boxes, not text
annotated_img_array = img_array.copy()
annotated_img = Image.fromarray(annotated_img_array)
from PIL import ImageDraw
draw = ImageDraw.Draw(annotated_img)
for result in results:
detection = getattr(result, 'detection', None)
if detection is not None:
bbox_obj = getattr(detection, 'bounding_box', None)
if bbox_obj is not None:
bbox = [int(bbox_obj.x1), int(bbox_obj.y1), int(bbox_obj.x2), int(bbox_obj.y2)]
draw.rectangle(bbox, outline="red", width=3)
if results:
detection_results = f"Detected {len(results)} license plate(s)."
else:
detection_results = "No license plate detected 😔."
return annotated_img, detection_results
with gr.Blocks() as demo:
gr.Markdown("# License Plate Detection")
with gr.Row():
with gr.Column():
image_input = gr.Image(type="pil", label="Upload an image of a vehicle with a license plate")
submit_btn = gr.Button("Run Plate Detection")
with gr.Column():
annotated_output = gr.Image(label="Annotated Image with Plate Detection")
detection_output = gr.Markdown(label="Detection Results")
submit_btn.click(
alpr_inference,
inputs=[image_input],
outputs=[annotated_output, detection_output]
)
if __name__ == "__main__":
demo.launch()
|