import gradio as gr from transformers import SegformerForSemanticSegmentation, SegformerImageProcessor from PIL import Image import torch import numpy as np # Load pretrained model processor = SegformerImageProcessor(do_reduce_labels=False) model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512") model.eval() # Prediction function def segment_image(input_image): inputs = processor(images=input_image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits pred_mask = torch.argmax(logits, dim=1)[0].cpu().numpy() normalized_mask = (pred_mask * (255 // logits.shape[1])).astype(np.uint8) output_image = Image.fromarray(normalized_mask) # Bigger mask (3x) scale_factor = 3 new_size = (output_image.width * scale_factor, output_image.height * scale_factor) bigger_output = output_image.resize(new_size, resample=Image.NEAREST) return bigger_output # Gradio Interface with submit button (live=False) demo = gr.Interface( fn=segment_image, inputs=gr.Image(type="pil", label="Upload Blood Smear Image"), outputs=gr.Image(type="pil", label="Predicted Grayscale Mask"), title="Malaria Blood Smear Segmentation (SegFormer - Pretrained)", description="Upload a blood smear image to segment it using a pretrained SegFormer model (ADE20K 150 classes).", examples=["1.png", "3.png"], live=False # <<< ye laga dena ) if __name__ == "__main__": demo.launch()