Spaces:
Runtime error
Runtime error
File size: 15,110 Bytes
efd5df3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 |
import os
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
from tqdm import tqdm
import random
from scipy.ndimage import gaussian_filter, map_coordinates # Add this line
import PIL
class ResidualConvBlock(nn.Module):
def __init__(self, in_channels, out_channels):
super(ResidualConvBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1)
self.in1 = nn.InstanceNorm2d(out_channels)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1)
self.in2 = nn.InstanceNorm2d(out_channels)
self.relu = nn.LeakyReLU(inplace=True)
self.downsample = nn.Conv2d(in_channels, out_channels, kernel_size=1) if in_channels != out_channels else None
def forward(self, x):
residual = x
out = self.relu(self.in1(self.conv1(x)))
out = self.in2(self.conv2(out))
if self.downsample:
residual = self.downsample(x)
out += residual
return self.relu(out)
class AttentionGate(nn.Module):
def __init__(self, F_g, F_l, F_int):
super(AttentionGate, self).__init__()
self.W_g = nn.Sequential(
nn.Conv2d(F_g, F_int, kernel_size=1, stride=1, padding=0, bias=True),
nn.InstanceNorm2d(F_int)
)
self.W_x = nn.Sequential(
nn.Conv2d(F_l, F_int, kernel_size=1, stride=1, padding=0, bias=True),
nn.InstanceNorm2d(F_int)
)
self.psi = nn.Sequential(
nn.Conv2d(F_int, 1, kernel_size=1, stride=1, padding=0, bias=True),
nn.InstanceNorm2d(1),
nn.Sigmoid()
)
self.relu = nn.LeakyReLU(inplace=True)
def forward(self, g, x):
g1 = self.W_g(g)
x1 = self.W_x(x)
psi = self.relu(g1 + x1)
psi = self.psi(psi)
return x * psi
class EnhancedUNet(nn.Module):
def __init__(self, n_channels, n_classes):
super(EnhancedUNet, self).__init__()
self.n_channels = n_channels
self.n_classes = n_classes
self.inc = ResidualConvBlock(n_channels, 64)
self.down1 = nn.Sequential(nn.MaxPool2d(2), ResidualConvBlock(64, 128))
self.down2 = nn.Sequential(nn.MaxPool2d(2), ResidualConvBlock(128, 256))
self.down3 = nn.Sequential(nn.MaxPool2d(2), ResidualConvBlock(256, 512))
self.down4 = nn.Sequential(nn.MaxPool2d(2), ResidualConvBlock(512, 1024))
self.dilation = nn.Sequential(
nn.Conv2d(1024, 1024, kernel_size=3, padding=2, dilation=2),
nn.InstanceNorm2d(1024),
nn.LeakyReLU(inplace=True),
nn.Conv2d(1024, 1024, kernel_size=3, padding=4, dilation=4),
nn.InstanceNorm2d(1024),
nn.LeakyReLU(inplace=True)
)
self.up4 = nn.ConvTranspose2d(1024, 512, kernel_size=2, stride=2)
self.att4 = AttentionGate(F_g=512, F_l=512, F_int=256)
self.up_conv4 = ResidualConvBlock(1024, 512)
self.up3 = nn.ConvTranspose2d(512, 256, kernel_size=2, stride=2)
self.att3 = AttentionGate(F_g=256, F_l=256, F_int=128)
self.up_conv3 = ResidualConvBlock(512, 256)
self.up2 = nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2)
self.att2 = AttentionGate(F_g=128, F_l=128, F_int=64)
self.up_conv2 = ResidualConvBlock(256, 128)
self.up1 = nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2)
self.att1 = AttentionGate(F_g=64, F_l=64, F_int=32)
self.up_conv1 = ResidualConvBlock(128, 64)
self.outc = nn.Conv2d(64, n_classes, kernel_size=1)
self.dropout = nn.Dropout(0.5)
def forward(self, x):
x1 = self.inc(x)
x2 = self.down1(x1)
x2 = self.dropout(x2)
x3 = self.down2(x2)
x3 = self.dropout(x3)
x4 = self.down3(x3)
x4 = self.dropout(x4)
x5 = self.down4(x4)
x5 = self.dilation(x5)
x5 = self.dropout(x5)
x = self.up4(x5)
x4 = self.att4(g=x, x=x4)
x = torch.cat([x4, x], dim=1)
x = self.up_conv4(x)
x = self.dropout(x)
x = self.up3(x)
x3 = self.att3(g=x, x=x3)
x = torch.cat([x3, x], dim=1)
x = self.up_conv3(x)
x = self.dropout(x)
x = self.up2(x)
x2 = self.att2(g=x, x=x2)
x = torch.cat([x2, x], dim=1)
x = self.up_conv2(x)
x = self.dropout(x)
x = self.up1(x)
x1 = self.att1(g=x, x=x1)
x = torch.cat([x1, x], dim=1)
x = self.up_conv1(x)
logits = self.outc(x)
return logits
class MoS2Dataset(Dataset):
def __init__(self, root_dir, transform=None):
self.root_dir = root_dir
self.transform = transform
self.images_dir = os.path.join(root_dir, 'images')
self.labels_dir = os.path.join(root_dir, 'labels')
self.image_files = []
for f in sorted(os.listdir(self.images_dir)):
if f.endswith('.png'):
try:
Image.open(os.path.join(self.images_dir, f)).verify()
self.image_files.append(f)
except:
print(f"Skipping unreadable image: {f}")
def __len__(self):
return len(self.image_files)
def __getitem__(self, idx):
img_name = self.image_files[idx]
img_path = os.path.join(self.images_dir, img_name)
if not os.path.exists(img_path):
print(f"Image file does not exist: {img_path}")
return None, None
label_name = f"image_{img_name.split('_')[1].replace('.png', '.npy')}"
label_path = os.path.join(self.labels_dir, label_name)
try:
image = np.array(Image.open(img_path).convert('L'), dtype=np.float32) / 255.0
label = np.load(label_path).astype(np.int64)
except (PIL.UnidentifiedImageError, FileNotFoundError, IOError) as e:
print(f"Error loading image {img_path}: {str(e)}")
return None, None # Or handle this case appropriately
if self.transform:
image, label = self.transform(image, label)
image = torch.from_numpy(image).float().unsqueeze(0)
label = torch.from_numpy(label).long()
return image, label
class AugmentationTransform:
def __init__(self):
self.aug_functions = [
self.random_brightness_contrast,
self.random_gamma,
self.random_noise,
self.random_elastic_deform
]
def __call__(self, image, label):
for aug_func in self.aug_functions:
if random.random() < 0.5: # 50% chance to apply each augmentation
image, label = aug_func(image, label)
return image.astype(np.float32), label # Ensure float32
def random_brightness_contrast(self, image, label):
brightness = random.uniform(0.7, 1.3)
contrast = random.uniform(0.7, 1.3)
image = np.clip(brightness * image + contrast * (image - 0.5) + 0.5, 0, 1)
return image, label
def random_gamma(self, image, label):
gamma = random.uniform(0.7, 1.3)
image = np.power(image, gamma)
return image, label
def random_noise(self, image, label):
noise = np.random.normal(0, 0.05, image.shape)
image = np.clip(image + noise, 0, 1)
return image, label
def random_elastic_deform(self, image, label):
alpha = random.uniform(10, 20)
sigma = random.uniform(3, 5)
shape = image.shape
dx = np.random.rand(*shape) * 2 - 1
dy = np.random.rand(*shape) * 2 - 1
dx = gaussian_filter(dx, sigma, mode="constant", cval=0) * alpha
dy = gaussian_filter(dy, sigma, mode="constant", cval=0) * alpha
x, y = np.meshgrid(np.arange(shape[1]), np.arange(shape[0]))
indices = np.reshape(y+dy, (-1, 1)), np.reshape(x+dx, (-1, 1))
image = map_coordinates(image, indices, order=1).reshape(shape)
label = map_coordinates(label, indices, order=0).reshape(shape)
return image, label
def focal_loss(output, target, alpha=0.25, gamma=2):
ce_loss = nn.CrossEntropyLoss(reduction='none')(output, target)
pt = torch.exp(-ce_loss)
focal_loss = alpha * (1-pt)**gamma * ce_loss
return focal_loss.mean()
def dice_loss(output, target, smooth=1e-5):
output = torch.softmax(output, dim=1)
num_classes = output.shape[1]
dice_sum = 0
for c in range(num_classes):
pred_class = output[:, c, :, :]
target_class = (target == c).float()
intersection = (pred_class * target_class).sum()
union = pred_class.sum() + target_class.sum()
dice = (2. * intersection + smooth) / (union + smooth)
dice_sum += dice
return 1 - dice_sum / num_classes
def combined_loss(output, target):
fl = focal_loss(output, target)
dl = dice_loss(output, target)
return 0.5 * fl + 0.5 * dl
def iou_score(output, target):
smooth = 1e-5
output = torch.argmax(output, dim=1)
intersection = (output & target).float().sum((1, 2))
union = (output | target).float().sum((1, 2))
iou = (intersection + smooth) / (union + smooth)
return iou.mean()
def pixel_accuracy(output, target):
output = torch.argmax(output, dim=1)
correct = torch.eq(output, target).int()
accuracy = float(correct.sum()) / float(correct.numel())
return accuracy
def train_one_epoch(model, dataloader, optimizer, criterion, device):
model.train()
total_loss = 0
total_iou = 0
total_accuracy = 0
pbar = tqdm(dataloader, desc='Training')
for images, labels in pbar:
images, labels = images.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
total_loss += loss.item()
total_iou += iou_score(outputs, labels)
total_accuracy += pixel_accuracy(outputs, labels)
pbar.set_postfix({'Loss': total_loss / (pbar.n + 1),
'IoU': total_iou / (pbar.n + 1),
'Accuracy': total_accuracy / (pbar.n + 1)})
return total_loss / len(dataloader), total_iou / len(dataloader), total_accuracy / len(dataloader)
def validate(model, dataloader, criterion, device):
model.eval()
total_loss = 0
total_iou = 0
total_accuracy = 0
with torch.no_grad():
pbar = tqdm(dataloader, desc='Validation')
for images, labels in pbar:
images, labels = images.to(device), labels.to(device)
outputs = model(images)
loss = criterion(outputs, labels)
total_loss += loss.item()
total_iou += iou_score(outputs, labels)
total_accuracy += pixel_accuracy(outputs, labels)
pbar.set_postfix({'Loss': total_loss / (pbar.n + 1),
'IoU': total_iou / (pbar.n + 1),
'Accuracy': total_accuracy / (pbar.n + 1)})
return total_loss / len(dataloader), total_iou / len(dataloader), total_accuracy / len(dataloader)
def main():
# Hyperparameters
num_classes = 4
batch_size = 64
num_epochs = 100
learning_rate = 1e-4
weight_decay = 1e-5
# Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Using device: {device}")
# Create datasets and data loaders
transform = AugmentationTransform()
# dataset = MoS2Dataset('MoS2_dataset_advanced_v2', transform=transform)
dataset = MoS2Dataset('dataset_with_noise_npy')
train_size = int(0.8 * len(dataset))
val_size = len(dataset) - train_size
train_dataset, val_dataset = torch.utils.data.random_split(dataset, [train_size, val_size])
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, num_workers=4)
# Create model
model = EnhancedUNet(n_channels=1, n_classes=num_classes).to(device)
# Loss and optimizer
criterion = combined_loss
optimizer = optim.AdamW(model.parameters(), lr=learning_rate, weight_decay=weight_decay)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max', factor=0.1, patience=10, verbose=True)
# Create directory for saving models and visualizations
save_dir = 'enhanced_training_results'
os.makedirs(save_dir, exist_ok=True)
# Training loop
best_val_iou = 0.0
for epoch in range(1, num_epochs + 1):
print(f"Epoch {epoch}/{num_epochs}")
train_loss, train_iou, train_accuracy = train_one_epoch(model, train_loader, optimizer, criterion, device)
val_loss, val_iou, val_accuracy = validate(model, val_loader, criterion, device)
print(f"Train - Loss: {train_loss:.4f}, IoU: {train_iou:.4f}, Accuracy: {train_accuracy:.4f}")
print(f"Val - Loss: {val_loss:.4f}, IoU: {val_iou:.4f}, Accuracy: {val_accuracy:.4f}")
scheduler.step(val_iou)
if val_iou > best_val_iou:
best_val_iou = val_iou
torch.save(model.state_dict(), os.path.join(save_dir, 'best_model.pth'))
print(f"New best model saved with IoU: {best_val_iou:.4f}")
# Save checkpoint
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'scheduler_state_dict': scheduler.state_dict(),
'best_val_iou': best_val_iou,
}, os.path.join(save_dir, f'checkpoint_epoch_{epoch}.pth'))
# Visualize predictions every 5 epochs
visualize_prediction(model, val_loader, device, epoch, save_dir)
print("Training completed!")
def visualize_prediction(model, val_loader, device, epoch, save_dir):
model.eval()
images, labels = next(iter(val_loader))
images, labels = images.to(device), labels.to(device)
with torch.no_grad():
outputs = model(images)
images = images.cpu().numpy()
labels = labels.cpu().numpy()
predictions = torch.argmax(outputs, dim=1).cpu().numpy()
fig, axs = plt.subplots(2, 3, figsize=(15, 10))
axs[0, 0].imshow(images[0, 0], cmap='gray')
axs[0, 0].set_title('Input Image')
axs[0, 1].imshow(labels[0], cmap='viridis')
axs[0, 1].set_title('True Label')
axs[0, 2].imshow(predictions[0], cmap='viridis')
axs[0, 2].set_title('Prediction')
axs[1, 0].imshow(images[1, 0], cmap='gray')
axs[1, 1].imshow(labels[1], cmap='viridis')
axs[1, 2].imshow(predictions[1], cmap='viridis')
plt.tight_layout()
plt.savefig(os.path.join(save_dir, f'prediction_epoch_{epoch}.png'))
plt.close()
if __name__ == "__main__":
main()
|