File size: 15,110 Bytes
efd5df3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
import os
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
from tqdm import tqdm
import random
from scipy.ndimage import gaussian_filter, map_coordinates  # Add this line
import PIL

class ResidualConvBlock(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(ResidualConvBlock, self).__init__()
        self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1)
        self.in1 = nn.InstanceNorm2d(out_channels)
        self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1)
        self.in2 = nn.InstanceNorm2d(out_channels)
        self.relu = nn.LeakyReLU(inplace=True)
        self.downsample = nn.Conv2d(in_channels, out_channels, kernel_size=1) if in_channels != out_channels else None

    def forward(self, x):
        residual = x
        out = self.relu(self.in1(self.conv1(x)))
        out = self.in2(self.conv2(out))
        if self.downsample:
            residual = self.downsample(x)
        out += residual
        return self.relu(out)

class AttentionGate(nn.Module):
    def __init__(self, F_g, F_l, F_int):
        super(AttentionGate, self).__init__()
        self.W_g = nn.Sequential(
            nn.Conv2d(F_g, F_int, kernel_size=1, stride=1, padding=0, bias=True),
            nn.InstanceNorm2d(F_int)
        )
        self.W_x = nn.Sequential(
            nn.Conv2d(F_l, F_int, kernel_size=1, stride=1, padding=0, bias=True),
            nn.InstanceNorm2d(F_int)
        )
        self.psi = nn.Sequential(
            nn.Conv2d(F_int, 1, kernel_size=1, stride=1, padding=0, bias=True),
            nn.InstanceNorm2d(1),
            nn.Sigmoid()
        )
        self.relu = nn.LeakyReLU(inplace=True)

    def forward(self, g, x):
        g1 = self.W_g(g)
        x1 = self.W_x(x)
        psi = self.relu(g1 + x1)
        psi = self.psi(psi)
        return x * psi

class EnhancedUNet(nn.Module):
    def __init__(self, n_channels, n_classes):
        super(EnhancedUNet, self).__init__()
        self.n_channels = n_channels
        self.n_classes = n_classes

        self.inc = ResidualConvBlock(n_channels, 64)
        self.down1 = nn.Sequential(nn.MaxPool2d(2), ResidualConvBlock(64, 128))
        self.down2 = nn.Sequential(nn.MaxPool2d(2), ResidualConvBlock(128, 256))
        self.down3 = nn.Sequential(nn.MaxPool2d(2), ResidualConvBlock(256, 512))
        self.down4 = nn.Sequential(nn.MaxPool2d(2), ResidualConvBlock(512, 1024))

        self.dilation = nn.Sequential(
            nn.Conv2d(1024, 1024, kernel_size=3, padding=2, dilation=2),
            nn.InstanceNorm2d(1024),
            nn.LeakyReLU(inplace=True),
            nn.Conv2d(1024, 1024, kernel_size=3, padding=4, dilation=4),
            nn.InstanceNorm2d(1024),
            nn.LeakyReLU(inplace=True)
        )

        self.up4 = nn.ConvTranspose2d(1024, 512, kernel_size=2, stride=2)
        self.att4 = AttentionGate(F_g=512, F_l=512, F_int=256)
        self.up_conv4 = ResidualConvBlock(1024, 512)

        self.up3 = nn.ConvTranspose2d(512, 256, kernel_size=2, stride=2)
        self.att3 = AttentionGate(F_g=256, F_l=256, F_int=128)
        self.up_conv3 = ResidualConvBlock(512, 256)

        self.up2 = nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2)
        self.att2 = AttentionGate(F_g=128, F_l=128, F_int=64)
        self.up_conv2 = ResidualConvBlock(256, 128)

        self.up1 = nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2)
        self.att1 = AttentionGate(F_g=64, F_l=64, F_int=32)
        self.up_conv1 = ResidualConvBlock(128, 64)

        self.outc = nn.Conv2d(64, n_classes, kernel_size=1)

        self.dropout = nn.Dropout(0.5)

    def forward(self, x):
        x1 = self.inc(x)
        x2 = self.down1(x1)
        x2 = self.dropout(x2)
        x3 = self.down2(x2)
        x3 = self.dropout(x3)
        x4 = self.down3(x3)
        x4 = self.dropout(x4)
        x5 = self.down4(x4)

        x5 = self.dilation(x5)
        x5 = self.dropout(x5)

        x = self.up4(x5)
        x4 = self.att4(g=x, x=x4)
        x = torch.cat([x4, x], dim=1)
        x = self.up_conv4(x)
        x = self.dropout(x)

        x = self.up3(x)
        x3 = self.att3(g=x, x=x3)
        x = torch.cat([x3, x], dim=1)
        x = self.up_conv3(x)
        x = self.dropout(x)

        x = self.up2(x)
        x2 = self.att2(g=x, x=x2)
        x = torch.cat([x2, x], dim=1)
        x = self.up_conv2(x)
        x = self.dropout(x)

        x = self.up1(x)
        x1 = self.att1(g=x, x=x1)
        x = torch.cat([x1, x], dim=1)
        x = self.up_conv1(x)

        logits = self.outc(x)
        return logits

class MoS2Dataset(Dataset):
    def __init__(self, root_dir, transform=None):
        self.root_dir = root_dir
        self.transform = transform
        self.images_dir = os.path.join(root_dir, 'images')
        self.labels_dir = os.path.join(root_dir, 'labels')
        self.image_files = []
        for f in sorted(os.listdir(self.images_dir)):
            if f.endswith('.png'):
                try:
                    Image.open(os.path.join(self.images_dir, f)).verify()
                    self.image_files.append(f)
                except:
                    print(f"Skipping unreadable image: {f}")

    def __len__(self):
        return len(self.image_files)

    def __getitem__(self, idx):
        img_name = self.image_files[idx]
        img_path = os.path.join(self.images_dir, img_name)
        if not os.path.exists(img_path):
            print(f"Image file does not exist: {img_path}")
            return None, None
        label_name = f"image_{img_name.split('_')[1].replace('.png', '.npy')}"
        label_path = os.path.join(self.labels_dir, label_name)

        try:
            image = np.array(Image.open(img_path).convert('L'), dtype=np.float32) / 255.0
            label = np.load(label_path).astype(np.int64)
        except (PIL.UnidentifiedImageError, FileNotFoundError, IOError) as e:
            print(f"Error loading image {img_path}: {str(e)}")
            return None, None  # Or handle this case appropriately

        if self.transform:
            image, label = self.transform(image, label)

        image = torch.from_numpy(image).float().unsqueeze(0)
        label = torch.from_numpy(label).long()

        return image, label

class AugmentationTransform:
    def __init__(self):
        self.aug_functions = [
            self.random_brightness_contrast,
            self.random_gamma,
            self.random_noise,
            self.random_elastic_deform
        ]

    def __call__(self, image, label):
        for aug_func in self.aug_functions:
            if random.random() < 0.5:  # 50% chance to apply each augmentation
                image, label = aug_func(image, label)
        return image.astype(np.float32), label  # Ensure float32


    def random_brightness_contrast(self, image, label):
        brightness = random.uniform(0.7, 1.3)
        contrast = random.uniform(0.7, 1.3)
        image = np.clip(brightness * image + contrast * (image - 0.5) + 0.5, 0, 1)
        return image, label

    def random_gamma(self, image, label):
        gamma = random.uniform(0.7, 1.3)
        image = np.power(image, gamma)
        return image, label

    def random_noise(self, image, label):
        noise = np.random.normal(0, 0.05, image.shape)
        image = np.clip(image + noise, 0, 1)
        return image, label

    def random_elastic_deform(self, image, label):
        alpha = random.uniform(10, 20)
        sigma = random.uniform(3, 5)
        shape = image.shape
        dx = np.random.rand(*shape) * 2 - 1
        dy = np.random.rand(*shape) * 2 - 1
        dx = gaussian_filter(dx, sigma, mode="constant", cval=0) * alpha
        dy = gaussian_filter(dy, sigma, mode="constant", cval=0) * alpha
        x, y = np.meshgrid(np.arange(shape[1]), np.arange(shape[0]))
        indices = np.reshape(y+dy, (-1, 1)), np.reshape(x+dx, (-1, 1))
        image = map_coordinates(image, indices, order=1).reshape(shape)
        label = map_coordinates(label, indices, order=0).reshape(shape)
        return image, label

def focal_loss(output, target, alpha=0.25, gamma=2):
    ce_loss = nn.CrossEntropyLoss(reduction='none')(output, target)
    pt = torch.exp(-ce_loss)
    focal_loss = alpha * (1-pt)**gamma * ce_loss
    return focal_loss.mean()

def dice_loss(output, target, smooth=1e-5):
    output = torch.softmax(output, dim=1)
    num_classes = output.shape[1]
    dice_sum = 0
    for c in range(num_classes):
        pred_class = output[:, c, :, :]
        target_class = (target == c).float()
        intersection = (pred_class * target_class).sum()
        union = pred_class.sum() + target_class.sum()
        dice = (2. * intersection + smooth) / (union + smooth)
        dice_sum += dice
    return 1 - dice_sum / num_classes

def combined_loss(output, target):
    fl = focal_loss(output, target)
    dl = dice_loss(output, target)
    return 0.5 * fl + 0.5 * dl

def iou_score(output, target):
    smooth = 1e-5
    output = torch.argmax(output, dim=1)
    intersection = (output & target).float().sum((1, 2))
    union = (output | target).float().sum((1, 2))
    iou = (intersection + smooth) / (union + smooth)
    return iou.mean()

def pixel_accuracy(output, target):
    output = torch.argmax(output, dim=1)
    correct = torch.eq(output, target).int()
    accuracy = float(correct.sum()) / float(correct.numel())
    return accuracy

def train_one_epoch(model, dataloader, optimizer, criterion, device):
    model.train()
    total_loss = 0
    total_iou = 0
    total_accuracy = 0
    
    pbar = tqdm(dataloader, desc='Training')
    for images, labels in pbar:
        images, labels = images.to(device), labels.to(device)
        
        optimizer.zero_grad()
        outputs = model(images)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        
        total_loss += loss.item()
        total_iou += iou_score(outputs, labels)
        total_accuracy += pixel_accuracy(outputs, labels)
        
        pbar.set_postfix({'Loss': total_loss / (pbar.n + 1),
                          'IoU': total_iou / (pbar.n + 1),
                          'Accuracy': total_accuracy / (pbar.n + 1)})
    
    return total_loss / len(dataloader), total_iou / len(dataloader), total_accuracy / len(dataloader)

def validate(model, dataloader, criterion, device):
    model.eval()
    total_loss = 0
    total_iou = 0
    total_accuracy = 0
    
    with torch.no_grad():
        pbar = tqdm(dataloader, desc='Validation')
        for images, labels in pbar:
            images, labels = images.to(device), labels.to(device)
            
            outputs = model(images)
            loss = criterion(outputs, labels)
            
            total_loss += loss.item()
            total_iou += iou_score(outputs, labels)
            total_accuracy += pixel_accuracy(outputs, labels)
            
            pbar.set_postfix({'Loss': total_loss / (pbar.n + 1),
                              'IoU': total_iou / (pbar.n + 1),
                              'Accuracy': total_accuracy / (pbar.n + 1)})
    
    return total_loss / len(dataloader), total_iou / len(dataloader), total_accuracy / len(dataloader)

def main():
    # Hyperparameters
    num_classes = 4
    batch_size = 64
    num_epochs = 100
    learning_rate = 1e-4
    weight_decay = 1e-5

    # Device configuration
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    print(f"Using device: {device}")

    # Create datasets and data loaders
    transform = AugmentationTransform()
    # dataset = MoS2Dataset('MoS2_dataset_advanced_v2', transform=transform)
    dataset = MoS2Dataset('dataset_with_noise_npy')

    train_size = int(0.8 * len(dataset))
    val_size = len(dataset) - train_size
    train_dataset, val_dataset = torch.utils.data.random_split(dataset, [train_size, val_size])

    train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4)
    val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, num_workers=4)

    # Create model
    model = EnhancedUNet(n_channels=1, n_classes=num_classes).to(device)

    # Loss and optimizer
    criterion = combined_loss
    optimizer = optim.AdamW(model.parameters(), lr=learning_rate, weight_decay=weight_decay)
    scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max', factor=0.1, patience=10, verbose=True)

    # Create directory for saving models and visualizations
    save_dir = 'enhanced_training_results'
    os.makedirs(save_dir, exist_ok=True)

    # Training loop
    best_val_iou = 0.0
    for epoch in range(1, num_epochs + 1):
        print(f"Epoch {epoch}/{num_epochs}")
        
        train_loss, train_iou, train_accuracy = train_one_epoch(model, train_loader, optimizer, criterion, device)
        val_loss, val_iou, val_accuracy = validate(model, val_loader, criterion, device)
        
        print(f"Train - Loss: {train_loss:.4f}, IoU: {train_iou:.4f}, Accuracy: {train_accuracy:.4f}")
        print(f"Val - Loss: {val_loss:.4f}, IoU: {val_iou:.4f}, Accuracy: {val_accuracy:.4f}")
        
        scheduler.step(val_iou)
        
        if val_iou > best_val_iou:
            best_val_iou = val_iou
            torch.save(model.state_dict(), os.path.join(save_dir, 'best_model.pth'))
            print(f"New best model saved with IoU: {best_val_iou:.4f}")
        
        # Save checkpoint
        torch.save({
            'epoch': epoch,
            'model_state_dict': model.state_dict(),
            'optimizer_state_dict': optimizer.state_dict(),
            'scheduler_state_dict': scheduler.state_dict(),
            'best_val_iou': best_val_iou,
        }, os.path.join(save_dir, f'checkpoint_epoch_{epoch}.pth'))

        # Visualize predictions every 5 epochs
        
        visualize_prediction(model, val_loader, device, epoch, save_dir)

    print("Training completed!")

def visualize_prediction(model, val_loader, device, epoch, save_dir):
    model.eval()
    images, labels = next(iter(val_loader))
    images, labels = images.to(device), labels.to(device)
    with torch.no_grad():
        outputs = model(images)
    
    images = images.cpu().numpy()
    labels = labels.cpu().numpy()
    predictions = torch.argmax(outputs, dim=1).cpu().numpy()
    
    fig, axs = plt.subplots(2, 3, figsize=(15, 10))
    axs[0, 0].imshow(images[0, 0], cmap='gray')
    axs[0, 0].set_title('Input Image')
    axs[0, 1].imshow(labels[0], cmap='viridis')
    axs[0, 1].set_title('True Label')
    axs[0, 2].imshow(predictions[0], cmap='viridis')
    axs[0, 2].set_title('Prediction')
    axs[1, 0].imshow(images[1, 0], cmap='gray')
    axs[1, 1].imshow(labels[1], cmap='viridis')
    axs[1, 2].imshow(predictions[1], cmap='viridis')
    plt.tight_layout()
    plt.savefig(os.path.join(save_dir, f'prediction_epoch_{epoch}.png'))
    plt.close()

if __name__ == "__main__":
    main()