import gradio as gr from ultralytics import YOLO from PIL import Image model = YOLO("./best.pt") def process_img(img: gr.Image): result = model.predict(img) for r in result: im_bgr = r.plot() return gr.Image( label="Output Image with labels", value=Image.fromarray(im_bgr[..., ::-1]) ) with gr.Blocks() as demo: gr.Markdown(value="Port Classification App") with gr.Row(): with gr.Column(): upload_img = gr.Image(label="Upload Image", type="pil") classify_img_button = gr.Button(value="Process Image") with gr.Column(): output_img = gr.Image(label="Output Image with labels") with gr.Row(): gr.Examples( examples=[ "./examples/01.jpg", "./examples/02.jpg", "./examples/03.jpg", "./examples/04.jpg", "./examples/05.jpg", "./examples/06.jpg", ], inputs=upload_img ) classify_img_button.click(fn=process_img, inputs=upload_img, outputs=output_img) demo.launch()