import cv2 import torch import numpy as np from PIL import Image from torchvision import models, transforms from ultralytics import YOLO import gradio as gr import torch.nn as nn # Initialize device device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # Load models yolo_model = YOLO('best.pt') # Make sure this file is uploaded to your Space resnet = models.resnet50(pretrained=False) # Modify ResNet for 3 classes resnet.fc = nn.Linear(resnet.fc.in_features, 3) resnet.load_state_dict(torch.load('rice_resnet_model.pth', map_location=device)) resnet = resnet.to(device) resnet.eval() # Class labels class_labels = ["c9", "kant", "superf"] # Image transformations transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) def classify_crop(crop_img): """Classify a single rice grain""" image = transform(crop_img).unsqueeze(0).to(device) with torch.no_grad(): output = resnet(image) _, predicted = torch.max(output, 1) return class_labels[predicted.item()] def detect_and_classify(image): """Process full image with YOLO + ResNet""" image = np.array(image) results = yolo_model(image)[0] boxes = results.boxes.xyxy.cpu().numpy() for box in boxes: x1, y1, x2, y2 = map(int, box[:4]) crop = image[y1:y2, x1:x2] crop_pil = Image.fromarray(cv2.cvtColor(crop, cv2.COLOR_BGR2RGB)) predicted_label = classify_crop(crop_pil) # Draw bounding box and label cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2) cv2.putText(image, predicted_label, (x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (36, 255, 12), 2) return Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)) # Gradio Interface with gr.Blocks(title="چاول کا شناختی نظام") as demo: gr.Markdown(""" # چاول کا شناختی نظام ایک تصویر اپ لوڈ کریں جس میں چاول کے دانے ہوں۔ نظام ہر دانے کو پہچان کر اس کی قسم بتائے گا۔ """) with gr.Row(): input_image = gr.Image(type="pil", label="تصویر داخل کریں") output_image = gr.Image(type="pil", label="نتیجہ") submit_btn = gr.Button("تشخیص کریں") submit_btn.click( fn=detect_and_classify, inputs=input_image, outputs=output_image ) gr.Examples( examples=[["example1.jpg"], ["example2.jpg"]], # Add your example images inputs=input_image, outputs=output_image, fn=detect_and_classify, cache_examples=True ) demo.launch()