Spaces:
Running
Running
File size: 19,654 Bytes
edf454b e92e659 edf454b dc92053 cb5b71d 7b9203f bc133ae e92e659 dc92053 cb5b71d edf454b fe3ba5f edf454b e92e659 edf454b e92e659 edf454b e92e659 edf454b cb5b71d 0c5b67f e92e659 6a31b9a dc92053 cb5b71d e92e659 cb5b71d e92e659 cb5b71d e92e659 edf454b cb5b71d edf454b cb5b71d edf454b cb5b71d fe3ba5f cb5b71d edf454b cb5b71d 0c5b67f cb5b71d dc92053 cb5b71d bc133ae cb5b71d bc133ae cb5b71d 7b9203f cb5b71d bc133ae cb5b71d edf454b 7b9203f edf454b bc133ae edf454b cb5b71d 7b9203f edf454b cb5b71d dc92053 cb5b71d dc92053 cb5b71d dc92053 cb5b71d dc92053 cb5b71d e92e659 cb5b71d bc133ae cb5b71d edf454b cb5b71d e92e659 cb5b71d edf454b db55b72 edf454b fe3ba5f edf454b cb5b71d e92e659 7b9203f e92e659 0c5b67f cb5b71d edf454b cb5b71d edf454b cb5b71d edf454b cb5b71d edf454b bc133ae edf454b bc133ae edf454b bc133ae edf454b e92e659 edf454b e92e659 edf454b bc133ae edf454b bc133ae edf454b cb5b71d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 |
import multiprocessing
import textwrap
import time
import traceback
from typing import TypedDict
import numpy as np
import pandas as pd
from rdflib import term
import streamlit as st
from components.safe_button import button_with_confirmation
from core.constants import NAMES_INFO
from core.data_types import MLC_DATA_TYPES
from core.data_types import mlc_to_str_data_type
from core.data_types import STR_DATA_TYPES
from core.data_types import str_to_mlc_data_type
from core.query_params import expand_record_set
from core.query_params import is_record_set_expanded
from core.state import Field
from core.state import Metadata
from core.state import RecordSet
from core.state import SelectedRecordSet
from events.record_sets import handle_record_set_change
from events.record_sets import RecordSetEvent
import mlcroissant as mlc
from utils import needed_field
from views.source import FieldEvent
from views.source import handle_field_change
from views.source import render_references
from views.source import render_source
_NUM_RECORDS = 3
_TIMEOUT_SECONDS = 1
_INFO = """RecordSets describe sets of structured records obtained from resources or
other RecordSets. You can think of RecordSets as tables with typed fields."""
class _Result(TypedDict):
df: pd.DataFrame | None
exception: Exception | None
@st.cache_data(
show_spinner="Generating the dataset...",
hash_funcs={
"mlcroissant.Metadata": hash,
"mlcroissant.Field": hash,
"mlcroissant.FileObject": hash,
"mlcroissant.FileSet": hash,
"mlcroissant.RecordSet": hash,
},
)
def _generate_data_with_timeout(record_set: RecordSet) -> _Result:
"""Generates the data and waits at most _TIMEOUT_SECONDS."""
with multiprocessing.Manager() as manager:
result: _Result = manager.dict(df=None, exception=None)
args = (record_set, result)
process = multiprocessing.Process(target=_generate_data, args=args)
process.start()
if not process.is_alive():
return _Result(**result)
time.sleep(_TIMEOUT_SECONDS)
if process.is_alive():
process.kill()
result["exception"] = TimeoutError(
"The generation took too long and was killed. Please, use the CLI as"
" described in"
" https://github.com/mlcommons/croissant/tree/main/python/mlcroissant#verifyload-a-croissant-dataset."
)
return _Result(**result)
def _generate_data(record_set: RecordSet, result: _Result) -> pd.DataFrame | None:
"""Generates the first _NUM_RECORDS records."""
try:
metadata: Metadata = st.session_state[Metadata]
if metadata is None:
raise ValueError(
"The dataset is still incomplete. Please, go to the overview to see"
" errors."
)
croissant = metadata.to_canonical()
if croissant:
dataset = mlc.Dataset.from_metadata(croissant)
records = iter(dataset.records(record_set=record_set.name))
df = []
for i, record in enumerate(iter(records)):
if i >= _NUM_RECORDS:
break
# Decode bytes as str:
for key, value in record.items():
if isinstance(value, bytes):
try:
record[key] = value.decode("utf-8")
except:
pass
df.append(record)
result["df"] = pd.DataFrame(df)
except Exception:
result["exception"] = traceback.format_exc()
def _handle_close_fields():
st.session_state[SelectedRecordSet] = None
def _handle_on_click_field(
record_set_key: int,
record_set: RecordSet,
):
st.session_state[SelectedRecordSet] = SelectedRecordSet(
record_set_key=record_set_key,
record_set=record_set,
)
def _data_editor_key(record_set_key: int, record_set: RecordSet) -> str:
return f"{record_set_key}-{record_set.name}-dataframe"
def _get_possible_sources(metadata: Metadata) -> list[str]:
possible_sources: list[str] = []
for resource in metadata.distribution:
possible_sources.append(resource.name)
for record_set in metadata.record_sets:
for field in record_set.fields:
possible_sources.append(f"{record_set.name}/{field.name}")
return possible_sources
LeftOrRight = tuple[str, str]
Join = tuple[LeftOrRight, LeftOrRight]
def _find_left_or_right(source: mlc.Source) -> LeftOrRight:
uid = source.uid
if "/" in uid:
parts = uid.split("/")
return (parts[0], parts[1])
elif source.extract.column:
return (uid, source.extract.column)
elif source.extract.json_path:
return (uid, source.extract.json_path)
elif source.extract.file_property:
return (uid, source.extract.file_property)
else:
return (uid, None)
def _find_joins(fields: list[Field]) -> set[Join]:
"""Finds the existing joins in the fields."""
joins: set[Join] = set()
for field in fields:
if field.source and field.references:
left = _find_left_or_right(field.source)
right = _find_left_or_right(field.references)
joins.add((left, right))
return joins
def _handle_create_record_set():
metadata: Metadata = st.session_state[Metadata]
metadata.add_record_set(RecordSet(name="new-record-set", description=""))
def _handle_remove_record_set(record_set_key: int):
del st.session_state[Metadata].record_sets[record_set_key]
def _handle_fields_change(record_set_key: int, record_set: RecordSet):
expand_record_set(record_set=record_set)
data_editor_key = _data_editor_key(record_set_key, record_set)
result = st.session_state[data_editor_key]
# `result` has the following structure:
# ```
# {'edited_rows': {1: {}}, 'added_rows': [], 'deleted_rows': []}
# ```
fields = record_set.fields
for field_key in result["edited_rows"]:
field = fields[field_key]
new_fields = result["edited_rows"][field_key]
for new_field, new_value in new_fields.items():
if new_field == FieldDataFrame.NAME:
field.name = new_value
elif new_field == FieldDataFrame.DESCRIPTION:
field.description = new_value
elif new_field == FieldDataFrame.DATA_TYPE:
field.data_types = [str_to_mlc_data_type(new_value)]
for added_row in result["added_rows"]:
data_type = str_to_mlc_data_type(added_row.get(FieldDataFrame.DATA_TYPE))
field = Field(
name=added_row.get(FieldDataFrame.NAME),
description=added_row.get(FieldDataFrame.DESCRIPTION),
data_types=[data_type],
source=mlc.Source(),
references=mlc.Source(),
)
st.session_state[Metadata].add_field(record_set_key, field)
for field_key in result["deleted_rows"]:
st.session_state[Metadata].remove_field(record_set_key, field_key)
# Reset the in-line data if it exists.
if record_set.data:
record_set.data = []
class FieldDataFrame:
"""Names of the columns in the pd.DataFrame for `fields`."""
NAME = "Field name"
DESCRIPTION = "Field description"
DATA_TYPE = "Data type"
SOURCE_UID = "Source"
SOURCE_EXTRACT = "Source extract"
SOURCE_TRANSFORM = "Source transform"
REFERENCE_UID = "Reference"
REFERENCE_EXTRACT = "Reference extract"
def render_record_sets():
st.info(_INFO, icon="💡")
col1, col2 = st.columns([1, 1])
with col1:
with st.spinner("Generating the dataset..."):
_render_left_panel()
with col2:
_render_right_panel()
def _render_left_panel():
"""Left panel: visualization of all RecordSets as expandable forms."""
record_sets = st.session_state[Metadata].record_sets
record_set: RecordSet
for record_set_key, record_set in enumerate(record_sets):
title = f"**{record_set.name or '-'}** ({len(record_set.fields)} fields)"
prefix = f"record-set-{record_set_key}"
with st.expander(title, expanded=is_record_set_expanded(record_set)):
col1, col2 = st.columns([1, 3])
key = f"{prefix}-name"
col1.text_input(
needed_field("Name"),
placeholder="Name without special character.",
key=key,
help=f"The name of the RecordSet. {NAMES_INFO}",
value=record_set.name,
on_change=handle_record_set_change,
args=(RecordSetEvent.NAME, record_set, key),
)
key = f"{prefix}-description"
col2.text_input(
"Description",
placeholder="Provide a description of the RecordSet.",
key=key,
value=record_set.description,
on_change=handle_record_set_change,
args=(RecordSetEvent.DESCRIPTION, record_set, key),
)
key = f"{prefix}-is-enumeration"
st.checkbox(
"The RecordSet is an enumeration",
key=key,
help=(
"Enumerations indicate that the RecordSet takes its values from a"
" finite set. Similar to `ClassLabel` in"
" [TFDS](https://www.tensorflow.org/datasets/api_docs/python/tfds/features/ClassLabel)"
" or [Hugging"
" Face](https://huggingface.co/docs/datasets/v2.15.0/en/package_reference/main_classes#datasets.ClassLabel)."
),
value=record_set.is_enumeration,
on_change=handle_record_set_change,
args=(RecordSetEvent.IS_ENUMERATION, record_set, key),
)
key = f"{prefix}-has-data"
st.checkbox(
"The RecordSet has in-line data",
key=key,
help=(
"In-line data allows to embed data directly within the JSON-LD"
" without referencing another data source."
),
value=bool(record_set.data),
on_change=handle_record_set_change,
args=(RecordSetEvent.HAS_DATA, record_set, key),
)
joins = _find_joins(record_set.fields)
has_join = st.checkbox(
"The RecordSet contains joins. To add a new join, add a field"
" with a source in `RecordSet`/`FileSet`/`FileObject` and a reference"
" to another `RecordSet`/`FileSet`/`FileObject`.",
key=f"{prefix}-has-joins",
value=bool(joins),
disabled=True,
)
if has_join:
for left, right in joins:
col1, col2, _, col4, col5 = st.columns([2, 2, 1, 2, 2])
col1.text_input(
"Left join",
disabled=True,
value=left[0],
key=f"{prefix}-left-join-{left[0]}-{left[1]}",
)
col2.text_input(
"Left key",
disabled=True,
value=left[1],
key=f"{prefix}-left-key-{left[0]}-{left[1]}",
)
col4.text_input(
"Right join",
disabled=True,
value=right[0],
key=f"{prefix}-right-join-{right[0]}-{right[1]}",
)
col5.text_input(
"Right key",
disabled=True,
value=right[1],
key=f"{prefix}-right-key-{right[0]}-{right[1]}",
)
names = [field.name for field in record_set.fields]
descriptions = [field.description for field in record_set.fields]
# TODO(https://github.com/mlcommons/croissant/issues/350): Allow to display
# several data types, not only the first.
data_types = [
mlc_to_str_data_type(field.data_types[0]) if field.data_types else None
for field in record_set.fields
]
fields = pd.DataFrame(
{
FieldDataFrame.NAME: names,
FieldDataFrame.DESCRIPTION: descriptions,
FieldDataFrame.DATA_TYPE: data_types,
},
dtype=np.str_,
)
data_editor_key = _data_editor_key(record_set_key, record_set)
st.markdown(
needed_field("Fields"),
help=(
"Add/delete fields by directly editing the table. **Warning**: the"
" table contains information about the fields--not the data"
" directly. If you wish to embed data, tick the `The RecordSet is"
" an enumeration` box. To edit fields details, click the"
" button `Edit fields details` below."
),
)
st.data_editor(
fields,
use_container_width=True,
num_rows="dynamic",
key=data_editor_key,
column_config={
FieldDataFrame.NAME: st.column_config.TextColumn(
FieldDataFrame.NAME,
help="Name of the field",
required=True,
),
FieldDataFrame.DESCRIPTION: st.column_config.TextColumn(
FieldDataFrame.DESCRIPTION,
help="Description of the field",
required=False,
),
FieldDataFrame.DATA_TYPE: st.column_config.SelectboxColumn(
FieldDataFrame.DATA_TYPE,
help="The Croissant type",
options=STR_DATA_TYPES,
required=True,
),
},
on_change=_handle_fields_change,
args=(record_set_key, record_set),
)
result: _Result = _generate_data_with_timeout(record_set)
df, exception = result.get("df"), result.get("exception")
if exception is None and df is not None and not df.empty:
st.markdown("Preview the data:")
st.dataframe(df, use_container_width=True)
# The generation is not triggered if record_set has in-line `data`.
elif not record_set.data:
left, right = st.columns([1, 10])
if exception:
left.button(
"⚠️",
key=f"idea-{prefix}",
on_click=lambda: _generate_data_with_timeout.clear(),
help=textwrap.dedent(f"""**Error**:
```
{exception}
```
"""),
)
right.markdown("No preview is possible.")
st.button(
"Edit fields details",
key=f"{prefix}-show-fields",
on_click=_handle_on_click_field,
args=(record_set_key, record_set),
)
key = f"{prefix}-delete-record-set"
button_with_confirmation(
"Delete RecordSet",
key=key,
on_click=_handle_remove_record_set,
args=(record_set_key,),
)
st.button(
"Create a new RecordSet",
key=f"create-new-record-set",
type="primary",
on_click=_handle_create_record_set,
)
def _render_right_panel():
"""Right panel: visualization of the clicked Field."""
metadata: Metadata = st.session_state.get(Metadata)
selected: SelectedRecordSet = st.session_state.get(SelectedRecordSet)
if not selected:
return
record_set = selected.record_set
record_set_key = selected.record_set_key
with st.expander("**Fields**", expanded=True):
if isinstance(record_set.data, list):
st.markdown(
f"{needed_field('Data')}. This RecordSet is marked as having in-line"
" data. Please, list the data below:"
)
key = f"{record_set_key}-fields-data"
columns = [field.name for field in record_set.fields]
st.data_editor(
pd.DataFrame(record_set.data, columns=columns),
use_container_width=True,
num_rows="dynamic",
key=key,
column_config={
field.name: st.column_config.TextColumn(
field.name,
help=field.description,
required=True,
)
for field in record_set.fields
},
on_change=handle_record_set_change,
args=(RecordSetEvent.CHANGE_DATA, record_set, key),
)
else:
for field_key, field in enumerate(record_set.fields):
prefix = f"{record_set_key}-{field.name}-{field_key}"
col1, col2, col3 = st.columns([1, 1, 1])
key = f"{prefix}-name"
col1.text_input(
needed_field("Name"),
placeholder="Name without special character.",
key=key,
help=f"The name of the field. {NAMES_INFO}",
value=field.name,
on_change=handle_field_change,
args=(FieldEvent.NAME, field, key),
)
key = f"{prefix}-description"
col2.text_input(
"Description",
placeholder="Provide a description of the RecordSet.",
key=key,
on_change=handle_field_change,
value=field.description,
args=(FieldEvent.DESCRIPTION, field, key),
)
data_type_index = None
if field.data_types:
data_type = field.data_types[0]
if isinstance(data_type, str):
data_type = term.URIRef(data_type)
if data_type in MLC_DATA_TYPES:
data_type_index = MLC_DATA_TYPES.index(data_type)
key = f"{prefix}-datatypes"
col3.selectbox(
needed_field("Data type"),
index=data_type_index,
options=STR_DATA_TYPES,
key=key,
help=(
"The type of the data. `Text` corresponds to"
" https://schema.org/Text, etc."
),
on_change=handle_field_change,
args=(FieldEvent.DATA_TYPE, field, key),
)
possible_sources = _get_possible_sources(metadata)
render_source(record_set, field, possible_sources)
render_references(record_set, field, possible_sources)
st.divider()
st.button(
"Close",
key=f"{record_set.name}-{record_set_key}-close-fields",
type="primary",
on_click=_handle_close_fields,
)
|