croissant-editor / views /record_sets.py
marcenacp's picture
Deploy (see actual commits on https://github.com/mlcommons/croissant).
bc133ae
raw
history blame
19.7 kB
import multiprocessing
import textwrap
import time
import traceback
from typing import TypedDict
import numpy as np
import pandas as pd
from rdflib import term
import streamlit as st
from components.safe_button import button_with_confirmation
from core.constants import NAMES_INFO
from core.data_types import MLC_DATA_TYPES
from core.data_types import mlc_to_str_data_type
from core.data_types import STR_DATA_TYPES
from core.data_types import str_to_mlc_data_type
from core.query_params import expand_record_set
from core.query_params import is_record_set_expanded
from core.state import Field
from core.state import Metadata
from core.state import RecordSet
from core.state import SelectedRecordSet
from events.record_sets import handle_record_set_change
from events.record_sets import RecordSetEvent
import mlcroissant as mlc
from utils import needed_field
from views.source import FieldEvent
from views.source import handle_field_change
from views.source import render_references
from views.source import render_source
_NUM_RECORDS = 3
_TIMEOUT_SECONDS = 1
_INFO = """RecordSets describe sets of structured records obtained from resources or
other RecordSets. You can think of RecordSets as tables with typed fields."""
class _Result(TypedDict):
df: pd.DataFrame | None
exception: Exception | None
@st.cache_data(
show_spinner="Generating the dataset...",
hash_funcs={
"mlcroissant.Metadata": hash,
"mlcroissant.Field": hash,
"mlcroissant.FileObject": hash,
"mlcroissant.FileSet": hash,
"mlcroissant.RecordSet": hash,
},
)
def _generate_data_with_timeout(record_set: RecordSet) -> _Result:
"""Generates the data and waits at most _TIMEOUT_SECONDS."""
with multiprocessing.Manager() as manager:
result: _Result = manager.dict(df=None, exception=None)
args = (record_set, result)
process = multiprocessing.Process(target=_generate_data, args=args)
process.start()
if not process.is_alive():
return _Result(**result)
time.sleep(_TIMEOUT_SECONDS)
if process.is_alive():
process.kill()
result["exception"] = TimeoutError(
"The generation took too long and was killed. Please, use the CLI as"
" described in"
" https://github.com/mlcommons/croissant/tree/main/python/mlcroissant#verifyload-a-croissant-dataset."
)
return _Result(**result)
def _generate_data(record_set: RecordSet, result: _Result) -> pd.DataFrame | None:
"""Generates the first _NUM_RECORDS records."""
try:
metadata: Metadata = st.session_state[Metadata]
if metadata is None:
raise ValueError(
"The dataset is still incomplete. Please, go to the overview to see"
" errors."
)
croissant = metadata.to_canonical()
if croissant:
dataset = mlc.Dataset.from_metadata(croissant)
records = iter(dataset.records(record_set=record_set.name))
df = []
for i, record in enumerate(iter(records)):
if i >= _NUM_RECORDS:
break
# Decode bytes as str:
for key, value in record.items():
if isinstance(value, bytes):
try:
record[key] = value.decode("utf-8")
except:
pass
df.append(record)
result["df"] = pd.DataFrame(df)
except Exception:
result["exception"] = traceback.format_exc()
def _handle_close_fields():
st.session_state[SelectedRecordSet] = None
def _handle_on_click_field(
record_set_key: int,
record_set: RecordSet,
):
st.session_state[SelectedRecordSet] = SelectedRecordSet(
record_set_key=record_set_key,
record_set=record_set,
)
def _data_editor_key(record_set_key: int, record_set: RecordSet) -> str:
return f"{record_set_key}-{record_set.name}-dataframe"
def _get_possible_sources(metadata: Metadata) -> list[str]:
possible_sources: list[str] = []
for resource in metadata.distribution:
possible_sources.append(resource.name)
for record_set in metadata.record_sets:
for field in record_set.fields:
possible_sources.append(f"{record_set.name}/{field.name}")
return possible_sources
LeftOrRight = tuple[str, str]
Join = tuple[LeftOrRight, LeftOrRight]
def _find_left_or_right(source: mlc.Source) -> LeftOrRight:
uid = source.uid
if "/" in uid:
parts = uid.split("/")
return (parts[0], parts[1])
elif source.extract.column:
return (uid, source.extract.column)
elif source.extract.json_path:
return (uid, source.extract.json_path)
elif source.extract.file_property:
return (uid, source.extract.file_property)
else:
return (uid, None)
def _find_joins(fields: list[Field]) -> set[Join]:
"""Finds the existing joins in the fields."""
joins: set[Join] = set()
for field in fields:
if field.source and field.references:
left = _find_left_or_right(field.source)
right = _find_left_or_right(field.references)
joins.add((left, right))
return joins
def _handle_create_record_set():
metadata: Metadata = st.session_state[Metadata]
metadata.add_record_set(RecordSet(name="new-record-set", description=""))
def _handle_remove_record_set(record_set_key: int):
del st.session_state[Metadata].record_sets[record_set_key]
def _handle_fields_change(record_set_key: int, record_set: RecordSet):
expand_record_set(record_set=record_set)
data_editor_key = _data_editor_key(record_set_key, record_set)
result = st.session_state[data_editor_key]
# `result` has the following structure:
# ```
# {'edited_rows': {1: {}}, 'added_rows': [], 'deleted_rows': []}
# ```
fields = record_set.fields
for field_key in result["edited_rows"]:
field = fields[field_key]
new_fields = result["edited_rows"][field_key]
for new_field, new_value in new_fields.items():
if new_field == FieldDataFrame.NAME:
field.name = new_value
elif new_field == FieldDataFrame.DESCRIPTION:
field.description = new_value
elif new_field == FieldDataFrame.DATA_TYPE:
field.data_types = [str_to_mlc_data_type(new_value)]
for added_row in result["added_rows"]:
data_type = str_to_mlc_data_type(added_row.get(FieldDataFrame.DATA_TYPE))
field = Field(
name=added_row.get(FieldDataFrame.NAME),
description=added_row.get(FieldDataFrame.DESCRIPTION),
data_types=[data_type],
source=mlc.Source(),
references=mlc.Source(),
)
st.session_state[Metadata].add_field(record_set_key, field)
for field_key in result["deleted_rows"]:
st.session_state[Metadata].remove_field(record_set_key, field_key)
# Reset the in-line data if it exists.
if record_set.data:
record_set.data = []
class FieldDataFrame:
"""Names of the columns in the pd.DataFrame for `fields`."""
NAME = "Field name"
DESCRIPTION = "Field description"
DATA_TYPE = "Data type"
SOURCE_UID = "Source"
SOURCE_EXTRACT = "Source extract"
SOURCE_TRANSFORM = "Source transform"
REFERENCE_UID = "Reference"
REFERENCE_EXTRACT = "Reference extract"
def render_record_sets():
st.info(_INFO, icon="💡")
col1, col2 = st.columns([1, 1])
with col1:
with st.spinner("Generating the dataset..."):
_render_left_panel()
with col2:
_render_right_panel()
def _render_left_panel():
"""Left panel: visualization of all RecordSets as expandable forms."""
record_sets = st.session_state[Metadata].record_sets
record_set: RecordSet
for record_set_key, record_set in enumerate(record_sets):
title = f"**{record_set.name or '-'}** ({len(record_set.fields)} fields)"
prefix = f"record-set-{record_set_key}"
with st.expander(title, expanded=is_record_set_expanded(record_set)):
col1, col2 = st.columns([1, 3])
key = f"{prefix}-name"
col1.text_input(
needed_field("Name"),
placeholder="Name without special character.",
key=key,
help=f"The name of the RecordSet. {NAMES_INFO}",
value=record_set.name,
on_change=handle_record_set_change,
args=(RecordSetEvent.NAME, record_set, key),
)
key = f"{prefix}-description"
col2.text_input(
"Description",
placeholder="Provide a description of the RecordSet.",
key=key,
value=record_set.description,
on_change=handle_record_set_change,
args=(RecordSetEvent.DESCRIPTION, record_set, key),
)
key = f"{prefix}-is-enumeration"
st.checkbox(
"The RecordSet is an enumeration",
key=key,
help=(
"Enumerations indicate that the RecordSet takes its values from a"
" finite set. Similar to `ClassLabel` in"
" [TFDS](https://www.tensorflow.org/datasets/api_docs/python/tfds/features/ClassLabel)"
" or [Hugging"
" Face](https://huggingface.co/docs/datasets/v2.15.0/en/package_reference/main_classes#datasets.ClassLabel)."
),
value=record_set.is_enumeration,
on_change=handle_record_set_change,
args=(RecordSetEvent.IS_ENUMERATION, record_set, key),
)
key = f"{prefix}-has-data"
st.checkbox(
"The RecordSet has in-line data",
key=key,
help=(
"In-line data allows to embed data directly within the JSON-LD"
" without referencing another data source."
),
value=bool(record_set.data),
on_change=handle_record_set_change,
args=(RecordSetEvent.HAS_DATA, record_set, key),
)
joins = _find_joins(record_set.fields)
has_join = st.checkbox(
"The RecordSet contains joins. To add a new join, add a field"
" with a source in `RecordSet`/`FileSet`/`FileObject` and a reference"
" to another `RecordSet`/`FileSet`/`FileObject`.",
key=f"{prefix}-has-joins",
value=bool(joins),
disabled=True,
)
if has_join:
for left, right in joins:
col1, col2, _, col4, col5 = st.columns([2, 2, 1, 2, 2])
col1.text_input(
"Left join",
disabled=True,
value=left[0],
key=f"{prefix}-left-join-{left[0]}-{left[1]}",
)
col2.text_input(
"Left key",
disabled=True,
value=left[1],
key=f"{prefix}-left-key-{left[0]}-{left[1]}",
)
col4.text_input(
"Right join",
disabled=True,
value=right[0],
key=f"{prefix}-right-join-{right[0]}-{right[1]}",
)
col5.text_input(
"Right key",
disabled=True,
value=right[1],
key=f"{prefix}-right-key-{right[0]}-{right[1]}",
)
names = [field.name for field in record_set.fields]
descriptions = [field.description for field in record_set.fields]
# TODO(https://github.com/mlcommons/croissant/issues/350): Allow to display
# several data types, not only the first.
data_types = [
mlc_to_str_data_type(field.data_types[0]) if field.data_types else None
for field in record_set.fields
]
fields = pd.DataFrame(
{
FieldDataFrame.NAME: names,
FieldDataFrame.DESCRIPTION: descriptions,
FieldDataFrame.DATA_TYPE: data_types,
},
dtype=np.str_,
)
data_editor_key = _data_editor_key(record_set_key, record_set)
st.markdown(
needed_field("Fields"),
help=(
"Add/delete fields by directly editing the table. **Warning**: the"
" table contains information about the fields--not the data"
" directly. If you wish to embed data, tick the `The RecordSet is"
" an enumeration` box. To edit fields details, click the"
" button `Edit fields details` below."
),
)
st.data_editor(
fields,
use_container_width=True,
num_rows="dynamic",
key=data_editor_key,
column_config={
FieldDataFrame.NAME: st.column_config.TextColumn(
FieldDataFrame.NAME,
help="Name of the field",
required=True,
),
FieldDataFrame.DESCRIPTION: st.column_config.TextColumn(
FieldDataFrame.DESCRIPTION,
help="Description of the field",
required=False,
),
FieldDataFrame.DATA_TYPE: st.column_config.SelectboxColumn(
FieldDataFrame.DATA_TYPE,
help="The Croissant type",
options=STR_DATA_TYPES,
required=True,
),
},
on_change=_handle_fields_change,
args=(record_set_key, record_set),
)
result: _Result = _generate_data_with_timeout(record_set)
df, exception = result.get("df"), result.get("exception")
if exception is None and df is not None and not df.empty:
st.markdown("Previsualize the data:")
st.dataframe(df, use_container_width=True)
# The generation is not triggered if record_set has in-line `data`.
elif not record_set.data:
left, right = st.columns([1, 10])
if exception:
left.button(
"⚠️",
key=f"idea-{prefix}",
on_click=lambda: _generate_data_with_timeout.clear(),
help=textwrap.dedent(f"""**Error**:
```
{exception}
```
"""),
)
right.markdown("No preview is possible.")
st.button(
"Edit fields details",
key=f"{prefix}-show-fields",
on_click=_handle_on_click_field,
args=(record_set_key, record_set),
)
key = f"{prefix}-delete-record-set"
button_with_confirmation(
"Delete RecordSet",
key=key,
on_click=_handle_remove_record_set,
args=(record_set_key,),
)
st.button(
"Create a new RecordSet",
key=f"create-new-record-set",
type="primary",
on_click=_handle_create_record_set,
)
def _render_right_panel():
"""Right panel: visualization of the clicked Field."""
metadata: Metadata = st.session_state.get(Metadata)
selected: SelectedRecordSet = st.session_state.get(SelectedRecordSet)
if not selected:
return
record_set = selected.record_set
record_set_key = selected.record_set_key
with st.expander("**Fields**", expanded=True):
if isinstance(record_set.data, list):
st.markdown(
f"{needed_field('Data')}. This RecordSet is marked as having in-line"
" data. Please, list the data below:"
)
key = f"{record_set_key}-fields-data"
columns = [field.name for field in record_set.fields]
st.data_editor(
pd.DataFrame(record_set.data, columns=columns),
use_container_width=True,
num_rows="dynamic",
key=key,
column_config={
field.name: st.column_config.TextColumn(
field.name,
help=field.description,
required=True,
)
for field in record_set.fields
},
on_change=handle_record_set_change,
args=(RecordSetEvent.CHANGE_DATA, record_set, key),
)
else:
for field_key, field in enumerate(record_set.fields):
prefix = f"{record_set_key}-{field.name}-{field_key}"
col1, col2, col3 = st.columns([1, 1, 1])
key = f"{prefix}-name"
col1.text_input(
needed_field("Name"),
placeholder="Name without special character.",
key=key,
help=f"The name of the field. {NAMES_INFO}",
value=field.name,
on_change=handle_field_change,
args=(FieldEvent.NAME, field, key),
)
key = f"{prefix}-description"
col2.text_input(
"Description",
placeholder="Provide a description of the RecordSet.",
key=key,
on_change=handle_field_change,
value=field.description,
args=(FieldEvent.DESCRIPTION, field, key),
)
data_type_index = None
if field.data_types:
data_type = field.data_types[0]
if isinstance(data_type, str):
data_type = term.URIRef(data_type)
if data_type in MLC_DATA_TYPES:
data_type_index = MLC_DATA_TYPES.index(data_type)
key = f"{prefix}-datatypes"
col3.selectbox(
needed_field("Data type"),
index=data_type_index,
options=STR_DATA_TYPES,
key=key,
help=(
"The type of the data. `Text` corresponds to"
" https://schema.org/Text, etc."
),
on_change=handle_field_change,
args=(FieldEvent.DATA_TYPE, field, key),
)
possible_sources = _get_possible_sources(metadata)
render_source(record_set, field, possible_sources)
render_references(record_set, field, possible_sources)
st.divider()
st.button(
"Close",
key=f"{record_set.name}-{record_set_key}-close-fields",
type="primary",
on_click=_handle_close_fields,
)