File size: 8,711 Bytes
bebad14
d7f69ca
dffaf30
bebad14
d7f69ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bebad14
d7f69ca
 
 
 
 
 
 
 
 
 
 
 
bebad14
d7f69ca
 
28cb117
d7f69ca
 
 
 
 
 
 
 
 
 
 
 
 
 
28cb117
d7f69ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bebad14
d7f69ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b16c9c
 
d7f69ca
bebad14
 
d7f69ca
 
 
bebad14
f624b87
bebad14
 
 
d7f69ca
bebad14
fd32c9f
 
1891093
fd32c9f
 
809b460
1891093
fd32c9f
d7f69ca
bebad14
 
28cb117
bebad14
 
 
 
44470f9
28cb117
 
 
 
fd32c9f
 
 
 
28cb117
 
d7f69ca
28cb117
d7f69ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28cb117
8b16c9c
bebad14
 
d7f69ca
 
 
 
 
 
 
 
 
 
 
 
dffaf30
bebad14
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import time
import json
import gradio as gr
from gradio_molecule3d import Molecule3D
import torch
from torch_geometric.data import HeteroData
import numpy as np
from loguru import logger
from Bio import PDB
from Bio.PDB.PDBIO import PDBIO
from pinder.core.loader.geodata import structure2tensor
from pinder.core.loader.structure import Structure
from src.models.pinder_module import PinderLitModule

try:
    from torch_cluster import knn_graph

    torch_cluster_installed = True
except ImportError:
    logger.warning(
        "torch-cluster is not installed!"
        "Please install the appropriate library for your pytorch installation."
        "See https://github.com/rusty1s/pytorch_cluster/issues/185 for background."
    )
    torch_cluster_installed = False


def get_props_pdb(pdb_file):
    structure = Structure.read_pdb(pdb_file)
    atom_mask = np.isin(getattr(structure, "atom_name"), list(["CA"]))
    calpha = structure[atom_mask].copy()
    props = structure2tensor(
        atom_coordinates=structure.coord,
        atom_types=structure.atom_name,
        element_types=structure.element,
        residue_coordinates=calpha.coord,
        residue_types=calpha.res_name,
        residue_ids=calpha.res_id,
    )
    return props


def create_graph(pdb_1, pdb_2, k=5, device: torch.device = torch.device("cpu")):

    props_ligand = get_props_pdb(pdb_1)
    props_receptor = get_props_pdb(pdb_2)

    data = HeteroData()

    data["ligand"].x = props_ligand["atom_types"]
    data["ligand"].pos = props_ligand["atom_coordinates"]
    data["ligand", "ligand"].edge_index = knn_graph(data["ligand"].pos, k=k)

    data["receptor"].x = props_receptor["atom_types"]
    data["receptor"].pos = props_receptor["atom_coordinates"]
    data["receptor", "receptor"].edge_index = knn_graph(data["receptor"].pos, k=k)

    data = data.to(device)
    return data


def update_pdb_coordinates_from_tensor(
    input_filename, output_filename, coordinates_tensor
):
    r"""
    Updates atom coordinates in a PDB file with new transformed coordinates provided in a tensor.

    Parameters:
    - input_filename (str): Path to the original PDB file.
    - output_filename (str): Path to the new PDB file to save updated coordinates.
    - coordinates_tensor (torch.Tensor): Tensor of shape (1, N, 3) with transformed coordinates.
    """
    # Convert the tensor to a list of tuples
    new_coordinates = coordinates_tensor.squeeze(0).tolist()

    # Create a parser and parse the structure
    parser = PDB.PDBParser(QUIET=True)
    structure = parser.get_structure("structure", input_filename)

    # Flattened iterator for atoms to update coordinates
    atom_iterator = (
        atom
        for model in structure
        for chain in model
        for residue in chain
        for atom in residue
    )

    # Update each atom's coordinates
    for atom, (new_x, new_y, new_z) in zip(atom_iterator, new_coordinates):
        original_anisou = atom.get_anisou()
        original_uij = atom.get_siguij()
        original_tm = atom.get_sigatm()
        original_occupancy = atom.get_occupancy()
        original_bfactor = atom.get_bfactor()
        original_altloc = atom.get_altloc()
        original_serial_number = atom.get_serial_number()
        original_element = atom.get_charge()
        original_parent = atom.get_parent()
        original_radius = atom.get_radius()

        # Update only the atom coordinates, keep other fields intact
        atom.coord = np.array([new_x, new_y, new_z])

        # Reapply the preserved properties
        atom.set_anisou(original_anisou)
        atom.set_siguij(original_uij)
        atom.set_sigatm(original_tm)
        atom.set_occupancy(original_occupancy)
        atom.set_bfactor(original_bfactor)
        atom.set_altloc(original_altloc)
        # atom.set_fullname(original_fullname)
        atom.set_serial_number(original_serial_number)
        atom.set_charge(original_element)
        atom.set_radius(original_radius)
        atom.set_parent(original_parent)
        # atom.set_name(original_name)
        # atom.set_leve

    # Save the updated structure to a new PDB file
    io = PDBIO()
    io.set_structure(structure)
    io.save(output_filename)

    # Return the path to the updated PDB file
    return output_filename


def merge_pdb_files(file1, file2, output_file):
    r"""
    Merges two PDB files by concatenating them without altering their contents.

    Parameters:
    - file1 (str): Path to the first PDB file (e.g., receptor).
    - file2 (str): Path to the second PDB file (e.g., ligand).
    - output_file (str): Path to the output file where the merged structure will be saved.
    """
    with open(output_file, "w") as outfile:
        # Copy the contents of the first file
        with open(file1, "r") as f1:
            lines = f1.readlines()
            # Write all lines except the last 'END' line
            outfile.writelines(lines[:-1])
        # Copy the contents of the second file
        with open(file2, "r") as f2:
            outfile.write(f2.read())

    print(f"Merged PDB saved to {output_file}")
    return output_file


def predict(
    input_seq_1, input_msa_1, input_protein_1, input_seq_2, input_msa_2, input_protein_2
):
    start_time = time.time()
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    logger.info(f"Using device: {device}")

    data = create_graph(input_protein_1, input_protein_2, k=10, device=device)
    logger.info("Created graph data")

    model = PinderLitModule.load_from_checkpoint("./checkpoints/epoch_010.ckpt")
    model = model.to(device)
    model.eval()
    logger.info("Loaded model")

    with torch.no_grad():
        receptor_coords, ligand_coords = model(data)

    file1 = update_pdb_coordinates_from_tensor(
        input_protein_1, "holo_ligand.pdb", ligand_coords
    )
    file2 = update_pdb_coordinates_from_tensor(
        input_protein_2, "holo_receptor.pdb", receptor_coords
    )
    out_pdb = merge_pdb_files(file1, file2, "output.pdb")

    # return an output pdb file with the protein and two chains A and B.
    # also return a JSON with any metrics you want to report
    metrics = {"mean_plddt": 80, "binding_affinity": 2}

    end_time = time.time()
    run_time = end_time - start_time

    return out_pdb, json.dumps(metrics), run_time


with gr.Blocks() as app:

    gr.Markdown("# Template for inference")

    gr.Markdown("EquiMPNN MOdel")
    with gr.Row():
        with gr.Column():
            input_seq_1 = gr.Textbox(lines=3, label="Input Protein 1 sequence (FASTA)")
            input_msa_1 = gr.File(label="Input MSA Protein 1 (A3M)")
            input_protein_1 = gr.File(label="Input Protein 2 monomer (PDB)")
        with gr.Column():
            input_seq_2 = gr.Textbox(lines=3, label="Input Protein 2 sequence (FASTA)")
            input_msa_2 = gr.File(label="Input MSA Protein 2 (A3M)")
            input_protein_2 = gr.File(label="Input Protein 2 structure (PDB)")

    # define any options here

    # for automated inference the default options are used
    # slider_option = gr.Slider(0,10, label="Slider Option")
    # checkbox_option = gr.Checkbox(label="Checkbox Option")
    # dropdown_option = gr.Dropdown(["Option 1", "Option 2", "Option 3"], label="Radio Option")

    btn = gr.Button("Run Inference")

    gr.Examples(
        [
            [
                "GSGSPLAQQIKNIHSFIHQAKAAGRMDEVRTLQENLHQLMHEYFQQSD",
                "3v1c_A.pdb",
                "GSGSPLAQQIKNIHSFIHQAKAAGRMDEVRTLQENLHQLMHEYFQQSD",
                "3v1c_B.pdb",
            ],
        ],
        [input_seq_1, input_protein_1, input_seq_2, input_protein_2],
    )
    reps = [
        {
            "model": 0,
            "style": "cartoon",
            "chain": "A",
            "color": "whiteCarbon",
        },
        {
            "model": 0,
            "style": "cartoon",
            "chain": "B",
            "color": "greenCarbon",
        },
        {
            "model": 0,
            "chain": "A",
            "style": "stick",
            "sidechain": True,
            "color": "whiteCarbon",
        },
        {
            "model": 0,
            "chain": "B",
            "style": "stick",
            "sidechain": True,
            "color": "greenCarbon",
        },
    ]
    # outputs

    out = Molecule3D(reps=reps)
    metrics = gr.JSON(label="Metrics")
    run_time = gr.Textbox(label="Runtime")

    btn.click(
        predict,
        inputs=[
            input_seq_1,
            input_msa_1,
            input_protein_1,
            input_seq_2,
            input_msa_2,
            input_protein_2,
        ],
        outputs=[out, metrics, run_time],
    )

app.launch()