File size: 6,603 Bytes
b38c7b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import multiprocessing
import os
from argparse import ArgumentParser
from pathlib import Path
from typing import Optional

import rootutils
import torch
from loguru import logger
from pinder.core import PinderSystem, get_index
from pinder.core.loader.geodata import PairedPDB, structure2tensor
from pinder.core.loader.structure import Structure
from tqdm.auto import tqdm

# setup root dir and pythonpath
rootutils.setup_root(__file__, indicator=".project-root", pythonpath=True)

try:
    from torch_cluster import knn_graph

    torch_cluster_installed = True
except ImportError:
    logger.warning(
        "torch-cluster is not installed!"
        "Please install the appropriate library for your pytorch installation."
        "See https://github.com/rusty1s/pytorch_cluster/issues/185 for background."
    )
    torch_cluster_installed = False


def create_lr_files(system_id: str, apo_complex_path: str, save_path: str):
    apo_r_path = os.path.join(save_path, f"apo_r_{system_id}.pdb")
    apo_l_path = os.path.join(save_path, f"apo_l_{system_id}.pdb")
    native_path = apo_complex_path.with_name(apo_complex_path.stem + f"{system_id}.pdb")
    with open(native_path) as infile, open(apo_r_path, "w") as output_r, open(
        apo_l_path, "w"
    ) as output_l:

        for line in infile:
            # Check if the line is an ATOM or HETATM line and has a chain ID at position 21
            if line.startswith("ATOM") or line.startswith("HETATM"):
                chain_id = line[21]
                if chain_id == "R":
                    output_r.write(line)
                elif chain_id == "L":
                    output_l.write(line)
            else:
                # Write other lines (e.g., HEADER, REMARK) to both files
                output_r.write(line)
                output_l.write(line)
    return apo_r_path, apo_l_path


class CropPairedPDB(PairedPDB):
    @classmethod
    def from_crop_system(
        cls,
        system_id: str,
        root: str = "./data/",
        k: int = 10,
        add_edges: bool = True,
        predicted_structures: bool = True,
        split: str = "train",
    ) -> None:
        system = PinderSystem(system_id)
        # Create directories if they do not exist
        for subdir in ["apo", "holo", "predicted"]:
            os.makedirs(Path(root) / "raw" / subdir / split, exist_ok=True)

        try:
            holo_complex, apo_complex, pred_complex = system.create_masked_bound_unbound_complexes(
                renumber_residues=True
            )
            for complex_type, complex_obj in zip(
                ["apo", "holo", "predicted"], [apo_complex, holo_complex, pred_complex]
            ):
                complex_obj.to_pdb(
                    Path(root) / "raw" / complex_type / split / f"{system_id}_complex.pdb"
                )
        except Exception as e:
            logger.error(f"Error in writing PDB files: {e}, {system_id}")
            return None

        if predicted_structures:
            apo_complex = pred_complex
            save_path = os.path.join(root, "processed", "predicted", split)
        else:
            save_path = os.path.join(root, "processed", "apo", split)

        # create the directory if it does not exist
        os.makedirs(save_path, exist_ok=True)

        graph = cls.from_structure_pair(
            holo_complex=holo_complex,
            apo_complex=apo_complex,
            add_edges=add_edges,
            k=k,
        )
        torch.save(graph, os.path.join(save_path, f"{system_id}.pt"))

    @classmethod
    def from_structure_pair(
        cls,
        holo_complex: Structure,
        apo_complex: Structure,
        add_edges: bool = True,
        k: int = 10,
    ) -> PairedPDB:
        def get_structure_props(structure: Structure, start: int, end: Optional[int]):
            calpha = structure.filter("atom_name", mask=["CA"])
            return structure2tensor(
                atom_coordinates=structure.coords[start:end],
                atom_types=structure.atom_array.atom_name[start:end],
                element_types=structure.atom_array.element[start:end],
                residue_coordinates=calpha.coords[start:end],
                residue_types=calpha.atom_array.res_name[start:end],
                residue_ids=calpha.atom_array.res_id[start:end],
            )

        graph = cls()
        r_h = (holo_complex.dataframe["chain_id"] == "R").sum()
        r_a = (apo_complex.dataframe["chain_id"] == "R").sum()

        holo_r_props = get_structure_props(holo_complex, 0, r_h)
        holo_l_props = get_structure_props(holo_complex, r_h, None)
        apo_r_props = get_structure_props(apo_complex, 0, r_a)
        apo_l_props = get_structure_props(apo_complex, r_a, None)

        graph["ligand"].x = apo_l_props["atom_types"]
        graph["ligand"].pos = apo_l_props["atom_coordinates"]
        graph["receptor"].x = apo_r_props["atom_types"]
        graph["receptor"].pos = apo_r_props["atom_coordinates"]
        graph["ligand"].y = holo_l_props["atom_coordinates"]
        graph["receptor"].y = holo_r_props["atom_coordinates"]

        if add_edges and torch_cluster_installed:
            graph["ligand", "ligand"].edge_index = knn_graph(graph["ligand"].pos, k=k)
            graph["receptor", "receptor"].edge_index = knn_graph(graph["receptor"].pos, k=k)

        return graph


if __name__ == "__main__":
    parser = ArgumentParser()
    parser.add_argument("--n_jobs", type=int, default=20)
    parser.add_argument("--k", type=int, default=10)
    parser.add_argument("--predicted_structures", action="store_true")
    parser.add_argument("--split", type=str, default="train")
    args = parser.parse_args()

    predicted_structures = args.predicted_structures

    # get indices for train, validation, and test splits
    indices = get_index()

    if predicted_structures:
        query = '(split == "{split}") and ((apo_R == False and apo_L == False) and (predicted_R==True and predicted_L==True))'
    else:
        query = '(split == "{split}") and (apo_R == True and apo_L == True)'

    system_idx = indices.query(query.format(split=args.split)).reset_index(drop=True)

    system_ids = system_idx.id.tolist()

    def process_system_id(system_id: str):
        graph = CropPairedPDB.from_crop_system(
            system_id,
            predicted_structures=predicted_structures,
            k=args.k,
            split=args.split,
        )
        return graph

    with multiprocessing.Pool(args.n_jobs) as pool:
        results = list(tqdm(pool.imap(process_system_id, system_ids), total=len(system_ids)))