File size: 6,519 Bytes
b38c7b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import os
from typing import Any, Dict, Optional

import pandas as pd
import rootutils
from lightning import LightningDataModule
from torch_geometric.data import Dataset
from torch_geometric.loader import DataLoader

rootutils.setup_root(__file__, indicator=".project-root", pythonpath=True)

from src.data.components.pinder_dataset import PinderDataset


class PINDERDataModule(LightningDataModule):
    """`LightningDataModule` for the PINDER dataset."""

    def __init__(
        self,
        data_dir: str = "data/processed",
        predicted_structures: bool = False,
        high_quality: bool = False,
        batch_size: int = 1,
        num_workers: int = 0,
        pin_memory: bool = True,
    ) -> None:
        """Initialize the `PINDERDataModule`.

        Args:
            data_dir: Data for pinder. Defaults to "data/processed".
            predicted_structures: Whether to use predicted structures. Defaults to True.
            batch_size: Batch size. Defaults to 64.
            num_workers: Number of workers for parallel processing. Defaults to 0.
            pin_memory: Whether to pin memory. Defaults to True.
        """
        super().__init__()

        # this line allows to access init params with 'self.hparams' attribute
        # also ensures init params will be stored in ckpt
        self.save_hyperparameters(logger=False)

        # get metadata
        metadata = pd.read_csv(os.path.join(self.hparams.data_dir, "metadata.csv"))

        def get_files(split: str, complex_types: list) -> list:
            file_df = metadata[
                (metadata["split"] == split) & (metadata["complex"].isin(complex_types))
            ]
            file_df["file_paths"] = file_df.apply(
                lambda row: os.path.join(
                    "./data/processed", row["complex"], row["split"], row["file_paths"]
                ),
                axis=1,
            )
            return file_df["file_paths"].tolist()

        complex_types = ["apo", "predicted"] if self.hparams.predicted_structures else ["apo"]
        self.train_files = get_files("train", complex_types)
        self.val_files = get_files("val", complex_types)
        self.test_files = get_files("test", complex_types)

        self.data_train: Optional[Dataset] = None
        self.data_val: Optional[Dataset] = None
        self.data_test: Optional[Dataset] = None

        self.batch_size_per_device = batch_size

    def setup(self, stage: Optional[str] = None) -> None:
        """Load data. Set variables: `self.data_train`, `self.data_val`, `self.data_test`.

        This method is called by Lightning before `trainer.fit()`, `trainer.validate()`, `trainer.test()`, and
        `trainer.predict()`, so be careful not to execute things like random split twice! Also, it is called after
        `self.prepare_data()` and there is a barrier in between which ensures that all the processes proceed to
        `self.setup()` once the data is prepared and available for use.

        :param stage: The stage to setup. Either `"fit"`, `"validate"`, `"test"`, or `"predict"`. Defaults to ``None``.
        """
        # Divide batch size by the number of devices.
        if self.trainer is not None:
            if self.hparams.batch_size % self.trainer.world_size != 0:
                raise RuntimeError(
                    f"Batch size ({self.hparams.batch_size}) is not divisible by the number of devices ({self.trainer.world_size})."
                )
            self.batch_size_per_device = self.hparams.batch_size // self.trainer.world_size

        # load and split datasets only if not loaded already
        if not self.data_train and not self.data_val and not self.data_test:
            self.data_train = PinderDataset(self.train_files)
            self.data_val = PinderDataset(self.val_files)
            self.data_test = PinderDataset(self.test_files)

    def train_dataloader(self) -> DataLoader:
        """Create and return the train dataloader.

        :return: The train dataloader.
        """
        return DataLoader(
            dataset=self.data_train,
            batch_size=self.batch_size_per_device,
            num_workers=self.hparams.num_workers,
            pin_memory=self.hparams.pin_memory,
            shuffle=True,
            drop_last=True,
        )

    def val_dataloader(self) -> DataLoader:
        """Create and return the validation dataloader.

        :return: The validation dataloader.
        """
        return DataLoader(
            dataset=self.data_val,
            batch_size=self.batch_size_per_device,
            num_workers=self.hparams.num_workers,
            pin_memory=self.hparams.pin_memory,
            shuffle=False,
        )

    def test_dataloader(self) -> DataLoader:
        """Create and return the test dataloader.

        :return: The test dataloader.
        """
        return DataLoader(
            dataset=self.data_test,
            batch_size=self.batch_size_per_device,
            num_workers=self.hparams.num_workers,
            pin_memory=self.hparams.pin_memory,
            shuffle=False,
        )

    def teardown(self, stage: Optional[str] = None) -> None:
        """Lightning hook for cleaning up after `trainer.fit()`, `trainer.validate()`,
        `trainer.test()`, and `trainer.predict()`.

        :param stage: The stage being torn down. Either `"fit"`, `"validate"`, `"test"`, or `"predict"`.
            Defaults to ``None``.
        """
        pass

    def state_dict(self) -> Dict[Any, Any]:
        """Called when saving a checkpoint. Implement to generate and save the datamodule state.

        :return: A dictionary containing the datamodule state that you want to save.
        """
        return {}

    def load_state_dict(self, state_dict: Dict[str, Any]) -> None:
        """Called when loading a checkpoint. Implement to reload datamodule state given datamodule
        `state_dict()`.

        :param state_dict: The datamodule state returned by `self.state_dict()`.
        """
        pass


if __name__ == "__main__":
    datamodule = PINDERDataModule()
    datamodule.setup()
    # print(datamodule.train_files[64])
    train_loader = datamodule.train_dataloader()
    val_loader = datamodule.val_dataloader()
    test_loader = datamodule.test_dataloader()
    print(f"Number of training batches: {len(train_loader)}")
    print(f"Number of validation batches: {len(val_loader)}")
    print(f"Number of test batches: {len(test_loader)}")
    print(next(iter(train_loader)))