Spaces:
Sleeping
Sleeping
File size: 6,519 Bytes
b38c7b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
import os
from typing import Any, Dict, Optional
import pandas as pd
import rootutils
from lightning import LightningDataModule
from torch_geometric.data import Dataset
from torch_geometric.loader import DataLoader
rootutils.setup_root(__file__, indicator=".project-root", pythonpath=True)
from src.data.components.pinder_dataset import PinderDataset
class PINDERDataModule(LightningDataModule):
"""`LightningDataModule` for the PINDER dataset."""
def __init__(
self,
data_dir: str = "data/processed",
predicted_structures: bool = False,
high_quality: bool = False,
batch_size: int = 1,
num_workers: int = 0,
pin_memory: bool = True,
) -> None:
"""Initialize the `PINDERDataModule`.
Args:
data_dir: Data for pinder. Defaults to "data/processed".
predicted_structures: Whether to use predicted structures. Defaults to True.
batch_size: Batch size. Defaults to 64.
num_workers: Number of workers for parallel processing. Defaults to 0.
pin_memory: Whether to pin memory. Defaults to True.
"""
super().__init__()
# this line allows to access init params with 'self.hparams' attribute
# also ensures init params will be stored in ckpt
self.save_hyperparameters(logger=False)
# get metadata
metadata = pd.read_csv(os.path.join(self.hparams.data_dir, "metadata.csv"))
def get_files(split: str, complex_types: list) -> list:
file_df = metadata[
(metadata["split"] == split) & (metadata["complex"].isin(complex_types))
]
file_df["file_paths"] = file_df.apply(
lambda row: os.path.join(
"./data/processed", row["complex"], row["split"], row["file_paths"]
),
axis=1,
)
return file_df["file_paths"].tolist()
complex_types = ["apo", "predicted"] if self.hparams.predicted_structures else ["apo"]
self.train_files = get_files("train", complex_types)
self.val_files = get_files("val", complex_types)
self.test_files = get_files("test", complex_types)
self.data_train: Optional[Dataset] = None
self.data_val: Optional[Dataset] = None
self.data_test: Optional[Dataset] = None
self.batch_size_per_device = batch_size
def setup(self, stage: Optional[str] = None) -> None:
"""Load data. Set variables: `self.data_train`, `self.data_val`, `self.data_test`.
This method is called by Lightning before `trainer.fit()`, `trainer.validate()`, `trainer.test()`, and
`trainer.predict()`, so be careful not to execute things like random split twice! Also, it is called after
`self.prepare_data()` and there is a barrier in between which ensures that all the processes proceed to
`self.setup()` once the data is prepared and available for use.
:param stage: The stage to setup. Either `"fit"`, `"validate"`, `"test"`, or `"predict"`. Defaults to ``None``.
"""
# Divide batch size by the number of devices.
if self.trainer is not None:
if self.hparams.batch_size % self.trainer.world_size != 0:
raise RuntimeError(
f"Batch size ({self.hparams.batch_size}) is not divisible by the number of devices ({self.trainer.world_size})."
)
self.batch_size_per_device = self.hparams.batch_size // self.trainer.world_size
# load and split datasets only if not loaded already
if not self.data_train and not self.data_val and not self.data_test:
self.data_train = PinderDataset(self.train_files)
self.data_val = PinderDataset(self.val_files)
self.data_test = PinderDataset(self.test_files)
def train_dataloader(self) -> DataLoader:
"""Create and return the train dataloader.
:return: The train dataloader.
"""
return DataLoader(
dataset=self.data_train,
batch_size=self.batch_size_per_device,
num_workers=self.hparams.num_workers,
pin_memory=self.hparams.pin_memory,
shuffle=True,
drop_last=True,
)
def val_dataloader(self) -> DataLoader:
"""Create and return the validation dataloader.
:return: The validation dataloader.
"""
return DataLoader(
dataset=self.data_val,
batch_size=self.batch_size_per_device,
num_workers=self.hparams.num_workers,
pin_memory=self.hparams.pin_memory,
shuffle=False,
)
def test_dataloader(self) -> DataLoader:
"""Create and return the test dataloader.
:return: The test dataloader.
"""
return DataLoader(
dataset=self.data_test,
batch_size=self.batch_size_per_device,
num_workers=self.hparams.num_workers,
pin_memory=self.hparams.pin_memory,
shuffle=False,
)
def teardown(self, stage: Optional[str] = None) -> None:
"""Lightning hook for cleaning up after `trainer.fit()`, `trainer.validate()`,
`trainer.test()`, and `trainer.predict()`.
:param stage: The stage being torn down. Either `"fit"`, `"validate"`, `"test"`, or `"predict"`.
Defaults to ``None``.
"""
pass
def state_dict(self) -> Dict[Any, Any]:
"""Called when saving a checkpoint. Implement to generate and save the datamodule state.
:return: A dictionary containing the datamodule state that you want to save.
"""
return {}
def load_state_dict(self, state_dict: Dict[str, Any]) -> None:
"""Called when loading a checkpoint. Implement to reload datamodule state given datamodule
`state_dict()`.
:param state_dict: The datamodule state returned by `self.state_dict()`.
"""
pass
if __name__ == "__main__":
datamodule = PINDERDataModule()
datamodule.setup()
# print(datamodule.train_files[64])
train_loader = datamodule.train_dataloader()
val_loader = datamodule.val_dataloader()
test_loader = datamodule.test_dataloader()
print(f"Number of training batches: {len(train_loader)}")
print(f"Number of validation batches: {len(val_loader)}")
print(f"Number of test batches: {len(test_loader)}")
print(next(iter(train_loader)))
|