File size: 8,307 Bytes
b38c7b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import rootutils
import torch
from torch import nn
from torch.nn import BatchNorm1d, Linear, Module, ReLU, Sequential
from torch_geometric.loader import DataLoader
from torch_geometric.nn import MessagePassing
from torch_scatter import scatter

# setup root dir and pythonpath
rootutils.setup_root(__file__, indicator=".project-root", pythonpath=True)

from src.data.components.pinder_dataset import PinderDataset
from src.models.components.utils import (
    compute_euler_angles_from_rotation_matrices,
    compute_rotation_matrix_from_ortho6d,
)


class EquivariantMPNNLayer(MessagePassing):
    def __init__(self, emb_dim=64, out_dim=128, aggr="add"):
        r"""Message Passing Neural Network Layer

        This layer is equivariant to 3D rotations and translations.

        Args:
            emb_dim: (int) - hidden dimension d
            edge_dim: (int) - edge feature dimension d_e
            aggr: (str) - aggregation function \oplus (sum/mean/max)
        """
        # Set the aggregation function
        super().__init__(aggr=aggr)

        self.emb_dim = emb_dim

        #
        self.mlp_msg = Sequential(
            Linear(2 * emb_dim + 1, emb_dim),
            BatchNorm1d(emb_dim),
            ReLU(),
            Linear(emb_dim, emb_dim),
            BatchNorm1d(emb_dim),
            ReLU(),
        )

        self.mlp_pos = Sequential(
            Linear(emb_dim, emb_dim), BatchNorm1d(emb_dim), ReLU(), Linear(emb_dim, 1)
        )  # MLP \psi
        self.mlp_upd = Sequential(
            Linear(2 * emb_dim, emb_dim),
            BatchNorm1d(emb_dim),
            ReLU(),
            Linear(emb_dim, emb_dim),
            BatchNorm1d(emb_dim),
            ReLU(),
        )  # MLP \phi
        # ===========================================

        self.lin_out = Linear(emb_dim, out_dim)

    def forward(self, data):
        """
        The forward pass updates node features h via one round of message passing.

        Args:
            h: (n, d) - initial node features
            pos: (n, 3) - initial node coordinates
            edge_index: (e, 2) - pairs of edges (i, j)
            edge_attr: (e, d_e) - edge features

        Returns:
            out: [(n, d),(n,3)] - updated node features
        """

        #
        h, pos, edge_index = data
        h_out, pos_out = self.propagate(edge_index=edge_index, h=h, pos=pos)
        h_out = self.lin_out(h_out)
        return h_out, pos_out, edge_index
        # ==========================================

    #
    def message(self, h_i, h_j, pos_i, pos_j):
        # Compute distance between nodes i and j (Euclidean distance)
        # distance_ij = torch.norm(pos_i - pos_j, dim=-1, keepdim=True)  # (e, 1)
        pos_diff = pos_i - pos_j
        dists = torch.norm(pos_diff, dim=-1).unsqueeze(1)

        # Concatenate node features, edge features, and distance
        msg = torch.cat([h_i, h_j, dists], dim=-1)
        msg = self.mlp_msg(msg)
        pos_diff = pos_diff * self.mlp_pos(msg)  # (e, 2d + d_e + 1)

        # (e, d)
        return msg, pos_diff

    #   ...
    #
    def aggregate(self, inputs, index):
        """The aggregate function aggregates the messages from neighboring nodes,
        according to the chosen aggregation function ('sum' by default).

        Args:
            inputs: (e, d) - messages m_ij from destination to source nodes
            index: (e, 1) - list of source nodes for each edge/message in input

        Returns:
            aggr_out: (n, d) - aggregated messages m_i
        """
        msgs, pos_diffs = inputs

        msg_aggr = scatter(msgs, index, dim=self.node_dim, reduce=self.aggr)

        pos_aggr = scatter(pos_diffs, index, dim=self.node_dim, reduce="mean")

        return msg_aggr, pos_aggr

    def update(self, aggr_out, h, pos):
        msg_aggr, pos_aggr = aggr_out

        upd_out = self.mlp_upd(torch.cat((h, msg_aggr), dim=-1))

        upd_pos = pos + pos_aggr

        return upd_out, upd_pos

    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(emb_dim={self.emb_dim}, aggr={self.aggr})"


class PinderMPNNModel(Module):
    def __init__(self, input_dim=1, emb_dim=64, num_heads=5):
        """Message Passing Neural Network model for graph property prediction

        This model uses both node features and coordinates as inputs, and
        is invariant to 3D rotations and translations (the constituent MPNN layers
        are equivariant to 3D rotations and translations).

        Args:
            emb_dim: (int) - hidden dimension d
            input_dim: (int) - initial node feature dimension d_n
            edge_dim: (int) - edge feature dimension d_e
            out_dim: (int) - output dimension (fixed to 1)
        """
        super().__init__()

        # Linear projection for initial node features
        self.lin_in_rec = Linear(input_dim, emb_dim)
        self.lin_in_lig = Linear(input_dim, emb_dim)

        # Stack of MPNN layers
        self.receptor_mpnn = Sequential(
            EquivariantMPNNLayer(emb_dim, 128, aggr="mean"),
            EquivariantMPNNLayer(128, 256, aggr="mean"),
            # EquivariantMPNNLayer(256, 512, aggr="mean"),
            # EquivariantMPNNLayer(512, 512, aggr="mean"),
        )
        self.ligand_mpnn = Sequential(
            EquivariantMPNNLayer(64, 128, aggr="mean"),
            EquivariantMPNNLayer(128, 256, aggr="mean"),
            # EquivariantMPNNLayer(256, 512, aggr="mean"),
            # EquivariantMPNNLayer(512, 512, aggr="mean"),
        )

        # Cross-attention layer
        self.rec_cross_attention = nn.MultiheadAttention(256, num_heads, batch_first=True)
        self.lig_cross_attention = nn.MultiheadAttention(256, num_heads, batch_first=True)

        # MLPs for translation prediction
        self.fc_translation_rec = nn.Linear(256 + 3, 3)
        self.fc_translation_lig = nn.Linear(256 + 3, 3)

    def forward(self, batch):
        """
        The main forward pass of the model.

        Args:
            batch: Same as in forward_rot_trans.

        Returns:
            transformed_ligands: List of tensors, each of shape (1, num_ligand_atoms, 3)
            representing the transformed ligand coordinates after applying the predicted
            rotation and translation.
        """
        h_receptor = self.lin_in_rec(batch["receptor"].x)
        h_ligand = self.lin_in_lig(batch["ligand"].x)

        pos_receptor = batch["receptor"].pos
        pos_ligand = batch["ligand"].pos

        h_receptor, pos_receptor, _ = self.receptor_mpnn(
            (h_receptor, pos_receptor, batch["receptor", "receptor"].edge_index)
        )

        h_ligand, pos_ligand, _ = self.ligand_mpnn(
            (h_ligand, pos_ligand, batch["ligand", "ligand"].edge_index)
        )

        attn_output_rec, _ = self.rec_cross_attention(h_receptor, h_ligand, h_ligand)

        attn_output_lig, _ = self.lig_cross_attention(h_ligand, h_receptor, h_receptor)

        emb_features_receptor = torch.cat((attn_output_rec, pos_receptor), dim=-1)
        emb_features_ligand = torch.cat((attn_output_lig, pos_ligand), dim=-1)

        translation_vector_r = self.fc_translation_rec(emb_features_receptor)
        translation_vector_l = self.fc_translation_lig(emb_features_ligand)

        ortho_6d_rec = compute_rotation_matrix_from_ortho6d(attn_output_rec)
        ortho_6d_lig = compute_rotation_matrix_from_ortho6d(attn_output_lig)

        receptor_coords = (
            compute_euler_angles_from_rotation_matrices(ortho_6d_rec) * 180 / torch.pi
        )
        ligand_coords = compute_euler_angles_from_rotation_matrices(ortho_6d_lig) * 180 / torch.pi

        receptor_coords = receptor_coords + translation_vector_r
        ligand_coords = ligand_coords + translation_vector_l

        return receptor_coords, ligand_coords


if __name__ == "__main__":
    file_paths = ["./data/processed/apo/test/1a19__A1_P11540--1a19__B1_P11540.pt"]
    dataset = PinderDataset(file_paths=file_paths * 3)
    loader = DataLoader(dataset, batch_size=3, shuffle=False)
    batch = next(iter(loader))
    model = PinderMPNNModel()
    print("Number of parameters:", sum(p.numel() for p in model.parameters()))
    receptor_coords, ligand_coords = model(batch)
    print(receptor_coords.shape)
    print(ligand_coords.shape)