import warnings from importlib.util import find_spec from typing import Any, Callable, Dict, Optional, Tuple from omegaconf import DictConfig from src.utils import pylogger, rich_utils log = pylogger.RankedLogger(__name__, rank_zero_only=True) def extras(cfg: DictConfig) -> None: """Applies optional utilities before the task is started. Utilities: - Ignoring python warnings - Setting tags from command line - Rich config printing :param cfg: A DictConfig object containing the config tree. """ # return if no `extras` config if not cfg.get("extras"): log.warning("Extras config not found! ") return # disable python warnings if cfg.extras.get("ignore_warnings"): log.info("Disabling python warnings! ") warnings.filterwarnings("ignore") # prompt user to input tags from command line if none are provided in the config if cfg.extras.get("enforce_tags"): log.info("Enforcing tags! ") rich_utils.enforce_tags(cfg, save_to_file=True) # pretty print config tree using Rich library if cfg.extras.get("print_config"): log.info("Printing config tree with Rich! ") rich_utils.print_config_tree(cfg, resolve=True, save_to_file=True) def task_wrapper(task_func: Callable) -> Callable: """Optional decorator that controls the failure behavior when executing the task function. This wrapper can be used to: - make sure loggers are closed even if the task function raises an exception (prevents multirun failure) - save the exception to a `.log` file - mark the run as failed with a dedicated file in the `logs/` folder (so we can find and rerun it later) - etc. (adjust depending on your needs) Example: ``` @utils.task_wrapper def train(cfg: DictConfig) -> Tuple[Dict[str, Any], Dict[str, Any]]: ... return metric_dict, object_dict ``` :param task_func: The task function to be wrapped. :return: The wrapped task function. """ def wrap(cfg: DictConfig) -> Tuple[Dict[str, Any], Dict[str, Any]]: # execute the task try: metric_dict, object_dict = task_func(cfg=cfg) # things to do if exception occurs except Exception as ex: # save exception to `.log` file log.exception("") # some hyperparameter combinations might be invalid or cause out-of-memory errors # so when using hparam search plugins like Optuna, you might want to disable # raising the below exception to avoid multirun failure raise ex # things to always do after either success or exception finally: # display output dir path in terminal log.info(f"Output dir: {cfg.paths.output_dir}") # always close wandb run (even if exception occurs so multirun won't fail) if find_spec("wandb"): # check if wandb is installed import wandb if wandb.run: log.info("Closing wandb!") wandb.finish() return metric_dict, object_dict return wrap def get_metric_value(metric_dict: Dict[str, Any], metric_name: Optional[str]) -> Optional[float]: """Safely retrieves value of the metric logged in LightningModule. :param metric_dict: A dict containing metric values. :param metric_name: If provided, the name of the metric to retrieve. :return: If a metric name was provided, the value of the metric. """ if not metric_name: log.info("Metric name is None! Skipping metric value retrieval...") return None if metric_name not in metric_dict: raise Exception( f"Metric value not found! \n" "Make sure metric name logged in LightningModule is correct!\n" "Make sure `optimized_metric` name in `hparams_search` config is correct!" ) metric_value = metric_dict[metric_name].item() log.info(f"Retrieved metric value! <{metric_name}={metric_value}>") return metric_value