Spaces:
Sleeping
Sleeping
File size: 17,635 Bytes
0fdcb79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import time
from typing import List
import numpy as np
import torch
import ml_collections as mlc
from rdkit import Chem
from dockformerpp.data import data_transforms
from dockformerpp.data.data_transforms import get_restype_atom37_mask, get_restypes
from dockformerpp.data.protein_features import make_protein_features
from dockformerpp.data.utils import FeatureTensorDict, FeatureDict
from dockformerpp.utils import protein
def _np_filter_and_to_tensor_dict(np_example: FeatureDict, features_to_keep: List[str]) -> FeatureTensorDict:
"""Creates dict of tensors from a dict of NumPy arrays.
Args:
np_example: A dict of NumPy feature arrays.
features: A list of strings of feature names to be returned in the dataset.
Returns:
A dictionary of features mapping feature names to features. Only the given
features are returned, all other ones are filtered out.
"""
# torch generates warnings if feature is already a torch Tensor
to_tensor = lambda t: torch.tensor(t) if type(t) != torch.Tensor else t.clone().detach()
tensor_dict = {
k: to_tensor(v) for k, v in np_example.items() if k in features_to_keep
}
return tensor_dict
def _add_protein_probablistic_features(features: FeatureDict, cfg: mlc.ConfigDict, mode: str) -> FeatureDict:
if mode == "train":
p = torch.rand(1).item()
use_clamped_fape_value = float(p < cfg.supervised.clamp_prob)
features["use_clamped_fape"] = np.float32(use_clamped_fape_value)
else:
features["use_clamped_fape"] = np.float32(0.0)
return features
@data_transforms.curry1
def compose(x, fs):
for f in fs:
x = f(x)
return x
def _apply_protein_transforms(tensors: FeatureTensorDict) -> FeatureTensorDict:
transforms = [
data_transforms.cast_to_64bit_ints,
data_transforms.squeeze_features,
data_transforms.make_atom14_masks,
data_transforms.make_atom14_positions,
data_transforms.atom37_to_frames,
data_transforms.atom37_to_torsion_angles(""),
data_transforms.make_pseudo_beta(),
data_transforms.get_backbone_frames,
data_transforms.get_chi_angles,
]
tensors = compose(transforms)(tensors)
return tensors
def _apply_protein_probablistic_transforms(tensors: FeatureTensorDict, cfg: mlc.ConfigDict, mode: str) \
-> FeatureTensorDict:
transforms = [data_transforms.make_target_feat()]
crop_feats = dict(cfg.common.feat)
if cfg[mode].fixed_size:
transforms.append(data_transforms.select_feat(list(crop_feats)))
# TODO bshor: restore transforms for training on cropped proteins, need to handle pocket somehow
# if so, look for random_crop_to_size and make_fixed_size in data_transforms.py
compose(transforms)(tensors)
return tensors
class DataPipeline:
"""Assembles input features."""
def __init__(self, config: mlc.ConfigDict, mode: str):
self.config = config
self.mode = mode
self.feature_names = config.common.unsupervised_features
if config[mode].supervised:
self.feature_names += config.supervised.supervised_features
def process_pdb(self, pdb_path: str) -> FeatureTensorDict:
"""
Assembles features for a protein in a PDB file.
"""
with open(pdb_path, 'r') as f:
pdb_str = f.read()
protein_object = protein.from_pdb_string(pdb_str)
description = os.path.splitext(os.path.basename(pdb_path))[0].upper()
pdb_feats = make_protein_features(protein_object, description)
pdb_feats = _add_protein_probablistic_features(pdb_feats, self.config, self.mode)
tensor_feats = _np_filter_and_to_tensor_dict(pdb_feats, self.feature_names)
tensor_feats = _apply_protein_transforms(tensor_feats)
tensor_feats = _apply_protein_probablistic_transforms(tensor_feats, self.config, self.mode)
return tensor_feats
def _prepare_recycles(feat: torch.Tensor, num_recycles: int) -> torch.Tensor:
return feat.unsqueeze(-1).repeat(*([1] * len(feat.shape)), num_recycles)
def _fit_to_crop(target_tensor: torch.Tensor, crop_size: int, start_ind: int) -> torch.Tensor:
if len(target_tensor.shape) == 1:
ret = torch.zeros((crop_size, ), dtype=target_tensor.dtype)
ret[start_ind:start_ind + target_tensor.shape[0]] = target_tensor
return ret
elif len(target_tensor.shape) == 2:
ret = torch.zeros((crop_size, target_tensor.shape[-1]), dtype=target_tensor.dtype)
ret[start_ind:start_ind + target_tensor.shape[0], :] = target_tensor
return ret
else:
ret = torch.zeros((crop_size, *target_tensor.shape[1:]), dtype=target_tensor.dtype)
ret[start_ind:start_ind + target_tensor.shape[0], ...] = target_tensor
return ret
def parse_input_json(input_path: str, mode: str, config: mlc.ConfigDict, data_pipeline: DataPipeline,
data_dir: str, idx: int) -> FeatureTensorDict:
start_load_time = time.time()
input_data = json.load(open(input_path, "r"))
if mode == "train" or mode == "eval":
print("loading", input_data["pdb_id"], end=" ")
num_recycles = config.common.max_recycling_iters + 1
input_protein_r_feats = data_pipeline.process_pdb(pdb_path=os.path.join(data_dir, input_data["input_r_structure"]))
input_protein_l_feats = data_pipeline.process_pdb(pdb_path=os.path.join(data_dir, input_data["input_l_structure"]))
n_res_r = input_protein_r_feats["protein_target_feat"].shape[0]
n_res_l = input_protein_l_feats["protein_target_feat"].shape[0]
n_res_total = n_res_r + n_res_l
n_affinity = 1
# add 1 for affinity token
crop_size = n_res_total + n_affinity
if (mode == "train" or mode == "eval") and config.train.fixed_size:
crop_size = config.train.crop_size
assert crop_size >= n_res_total + n_affinity, f"crop_size: {crop_size}, n_res_r: {n_res_r}, n_res_l: {n_res_l}"
token_mask = torch.zeros((crop_size,), dtype=torch.float32)
token_mask[:n_res_total + n_affinity] = 1
protein_r_mask = torch.zeros((crop_size,), dtype=torch.float32)
protein_r_mask[:n_res_r] = 1
protein_l_mask = torch.zeros((crop_size,), dtype=torch.float32)
protein_l_mask[n_res_r:n_res_total] = 1
affinity_mask = torch.zeros((crop_size,), dtype=torch.float32)
affinity_mask[n_res_total] = 1
structural_mask = torch.zeros((crop_size,), dtype=torch.float32)
structural_mask[:n_res_total] = 1
inter_pair_mask = torch.zeros((crop_size, crop_size), dtype=torch.float32)
inter_pair_mask[:n_res_r, n_res_r:n_res_total] = 1
inter_pair_mask[n_res_r:n_res_total, :n_res_r] = 1
tf_dim = input_protein_r_feats["protein_target_feat"].shape[-1]
target_feat = torch.zeros((crop_size, tf_dim + 3), dtype=torch.float32)
target_feat[:n_res_r, :tf_dim] = input_protein_r_feats["protein_target_feat"]
target_feat[n_res_r:n_res_total, :tf_dim] = input_protein_l_feats["protein_target_feat"]
target_feat[:n_res_r, tf_dim] = 1 # Set "is_protein_r" flag for protein rows
target_feat[n_res_r:n_res_total, tf_dim + 1] = 1 # Set "is_protein_l" flag for ligand rows
target_feat[n_res_total, tf_dim + 2] = 1 # Set "is_affinity" flag for affinity row
input_positions = torch.zeros((crop_size, 3), dtype=torch.float32)
input_positions[:n_res_r] = input_protein_r_feats["pseudo_beta"]
input_positions[n_res_r:n_res_total] = input_protein_l_feats["pseudo_beta"]
distogram_mask = torch.zeros(crop_size)
if mode == "train":
ones_indices = torch.randperm(n_res_total)[:int(n_res_total * config.train.distogram_mask_prob)]
# print(ones_indices)
distogram_mask[ones_indices] = 1
input_positions = input_positions * (1 - distogram_mask).unsqueeze(-1)
elif mode == "predict":
# ignore all positions where pseudo_beta is 0, 0, 0
distogram_mask = (input_positions == 0).all(dim=-1).float()
# print("Ignoring residues", torch.nonzero(distogram_mask).flatten())
# Implement ligand as amino acid type 20
aatype = torch.cat([input_protein_r_feats["aatype"], input_protein_l_feats["aatype"]], dim=0)
residue_index = torch.cat([input_protein_r_feats["residue_index"], input_protein_l_feats["residue_index"]], dim=0)
residx_atom37_to_atom14 = torch.cat([input_protein_r_feats["residx_atom37_to_atom14"],
input_protein_l_feats["residx_atom37_to_atom14"]],
dim=0)
atom37_atom_exists = torch.cat([input_protein_r_feats["atom37_atom_exists"],
input_protein_l_feats["atom37_atom_exists"]], dim=0)
feats = {
"token_mask": token_mask,
"protein_r_mask": protein_r_mask,
"protein_l_mask": protein_l_mask,
"affinity_mask": affinity_mask,
"structural_mask": structural_mask,
"inter_pair_mask": inter_pair_mask,
"target_feat": target_feat,
"input_positions": input_positions,
"distogram_mask": distogram_mask,
"residue_index": _fit_to_crop(residue_index, crop_size, 0),
"aatype": _fit_to_crop(aatype, crop_size, 0),
"residx_atom37_to_atom14": _fit_to_crop(residx_atom37_to_atom14, crop_size, 0),
"atom37_atom_exists": _fit_to_crop(atom37_atom_exists, crop_size, 0),
}
if mode == "predict":
feats.update({
"in_chain_residue_index_r": input_protein_r_feats["in_chain_residue_index"],
"chain_index_r": input_protein_r_feats["chain_index"],
"in_chain_residue_index_l": input_protein_l_feats["in_chain_residue_index"],
"chain_index_l": input_protein_l_feats["chain_index"],
})
if mode == 'train' or mode == 'eval':
gt_protein_r_feats = data_pipeline.process_pdb(pdb_path=os.path.join(data_dir, input_data["gt_r_structure"]))
gt_protein_l_feats = data_pipeline.process_pdb(pdb_path=os.path.join(data_dir, input_data["gt_l_structure"]))
affinity_loss_factor = torch.tensor([1.0], dtype=torch.float32)
if input_data.get("affinity") is None:
eps = 1e-6
affinity_loss_factor = torch.tensor([eps], dtype=torch.float32)
affinity = torch.tensor([0.0], dtype=torch.float32)
else:
affinity = torch.tensor([input_data["affinity"]], dtype=torch.float32)
resolution = torch.tensor(input_data["resolution"], dtype=torch.float32)
# prepare inter_contacts
expanded_prot_r_pos = gt_protein_r_feats["pseudo_beta"].unsqueeze(1) # Shape: (n_res_r, 1, 3)
expanded_prot_l_pos = gt_protein_l_feats["pseudo_beta"].unsqueeze(0) # Shape: (1, n_res_l, 3)
distances = torch.sqrt(torch.sum((expanded_prot_r_pos - expanded_prot_l_pos) ** 2, dim=-1))
inter_contact = (distances < 8.0).float()
binding_site_mask_r = inter_contact.any(dim=1).float()
binding_site_mask_l = inter_contact.any(dim=0).float()
print("attaching binding masks", binding_site_mask_r.shape, binding_site_mask_l.shape)
binding_site_mask = torch.cat([binding_site_mask_r, binding_site_mask_l], dim=0)
inter_contact_reshaped_to_crop = torch.zeros((crop_size, crop_size), dtype=torch.float32)
inter_contact_reshaped_to_crop[:n_res_r, n_res_r:n_res_total] = inter_contact
inter_contact_reshaped_to_crop[n_res_r:n_res_total, :n_res_r] = inter_contact.T
# Use CA positions only
atom37_gt_positions = torch.cat([gt_protein_r_feats["all_atom_positions"],
gt_protein_l_feats["all_atom_positions"]], dim=0)
atom37_atom_exists_in_res = torch.cat([gt_protein_r_feats["atom37_atom_exists"],
gt_protein_l_feats["atom37_atom_exists"]], dim=0)
atom37_atom_exists_in_gt = torch.cat([gt_protein_r_feats["all_atom_mask"],
gt_protein_l_feats["all_atom_mask"]], dim=0)
atom14_gt_positions = torch.cat([gt_protein_r_feats["atom14_gt_positions"],
gt_protein_l_feats["atom14_gt_positions"]], dim=0)
atom14_atom_exists_in_res = torch.cat([gt_protein_r_feats["atom14_atom_exists"],
gt_protein_l_feats["atom14_atom_exists"]], dim=0)
atom14_atom_exists_in_gt = torch.cat([gt_protein_r_feats["atom14_gt_exists"],
gt_protein_l_feats["atom14_gt_exists"]], dim=0)
gt_pseudo_beta_joined = torch.cat([gt_protein_r_feats["pseudo_beta"], gt_protein_l_feats["pseudo_beta"]], dim=0)
gt_pseudo_beta_joined_mask = torch.cat([gt_protein_r_feats["pseudo_beta_mask"],
gt_protein_l_feats["pseudo_beta_mask"]], dim=0)
# IGNORES: residx_atom14_to_atom37, rigidgroups_group_exists,
# rigidgroups_group_is_ambiguous, pseudo_beta_mask, backbone_rigid_mask, protein_target_feat
gt_protein_feats = {
"atom37_gt_positions": atom37_gt_positions, # torch.Size([n_struct, 37, 3])
"atom37_atom_exists_in_res": atom37_atom_exists_in_res, # torch.Size([n_struct, 37])
"atom37_atom_exists_in_gt": atom37_atom_exists_in_gt, # torch.Size([n_struct, 37])
"atom14_gt_positions": atom14_gt_positions, # torch.Size([n_struct, 14, 3])
"atom14_atom_exists_in_res": atom14_atom_exists_in_res, # torch.Size([n_struct, 14])
"atom14_atom_exists_in_gt": atom14_atom_exists_in_gt, # torch.Size([n_struct, 14])
"gt_pseudo_beta_joined": gt_pseudo_beta_joined, # torch.Size([n_struct, 3])
"gt_pseudo_beta_joined_mask": gt_pseudo_beta_joined_mask, # torch.Size([n_struct])
# These we don't need to add the ligand to, because padding is sufficient (everything should be 0)
"atom14_alt_gt_positions": torch.cat([gt_protein_r_feats["atom14_alt_gt_positions"],
gt_protein_l_feats["atom14_alt_gt_positions"]], dim=0), # torch.Size([n_res, 14, 3])
"atom14_alt_gt_exists": torch.cat([gt_protein_r_feats["atom14_alt_gt_exists"],
gt_protein_l_feats["atom14_alt_gt_exists"]], dim=0), # torch.Size([n_res, 14])
"atom14_atom_is_ambiguous": torch.cat([gt_protein_r_feats["atom14_atom_is_ambiguous"],
gt_protein_l_feats["atom14_atom_is_ambiguous"]], dim=0), # torch.Size([n_res, 14])
"rigidgroups_gt_frames": torch.cat([gt_protein_r_feats["rigidgroups_gt_frames"],
gt_protein_l_feats["rigidgroups_gt_frames"]], dim=0), # torch.Size([n_res, 8, 4, 4])
"rigidgroups_gt_exists": torch.cat([gt_protein_r_feats["rigidgroups_gt_exists"],
gt_protein_l_feats["rigidgroups_gt_exists"]], dim=0), # torch.Size([n_res, 8])
"rigidgroups_alt_gt_frames": torch.cat([gt_protein_r_feats["rigidgroups_alt_gt_frames"],
gt_protein_l_feats["rigidgroups_alt_gt_frames"]], dim=0), # torch.Size([n_res, 8, 4, 4])
"backbone_rigid_tensor": torch.cat([gt_protein_r_feats["backbone_rigid_tensor"],
gt_protein_l_feats["backbone_rigid_tensor"]], dim=0), # torch.Size([n_res, 4, 4])
"backbone_rigid_mask": torch.cat([gt_protein_r_feats["backbone_rigid_mask"],
gt_protein_l_feats["backbone_rigid_mask"]], dim=0), # torch.Size([n_res])
"chi_angles_sin_cos": torch.cat([gt_protein_r_feats["chi_angles_sin_cos"],
gt_protein_l_feats["chi_angles_sin_cos"]], dim=0),
"chi_mask": torch.cat([gt_protein_r_feats["chi_mask"], gt_protein_l_feats["chi_mask"]], dim=0),
}
for k, v in gt_protein_feats.items():
gt_protein_feats[k] = _fit_to_crop(v, crop_size, 0)
feats = {
**feats,
**gt_protein_feats,
"resolution": resolution,
"affinity": affinity,
"affinity_loss_factor": affinity_loss_factor,
"seq_length": torch.tensor(n_res_total),
"binding_site_mask": _fit_to_crop(binding_site_mask, crop_size, 0),
"gt_inter_contacts": inter_contact_reshaped_to_crop,
}
for k, v in feats.items():
# print(k, v.shape)
feats[k] = _prepare_recycles(v, num_recycles)
feats["batch_idx"] = torch.tensor(
[idx for _ in range(crop_size)], dtype=torch.int64, device=feats["aatype"].device
)
print("load time", round(time.time() - start_load_time, 4))
return feats
|