DockFormerPP / prepare_pinder_dataset.py
bshor's picture
add dataset generation script
f9da277
import json
import os
import shutil
import random
import sys
from typing import List, Tuple, Optional
import Bio.PDB
import Bio.SeqUtils
import pandas as pd
import numpy as np
OUTPUT_FOLDER = "/tmp/output"
PINDER_ANNOTATIONS = "/tmp/index.parquet"
GSUTIL_PATH = "/tmp/google-cloud-sdk/bin/gsutil"
MAX_SYSTEMS_FOR_CLUSTER = 2
MAX_LENGTH = 350
MAX_TRIES_OF_METHOD = 5
def do_robust_chain_object_renumber(chain: Bio.PDB.Chain.Chain, new_chain_id: str) -> Optional[Bio.PDB.Chain.Chain]:
all_residues = [res for res in chain.get_residues()
if "CA" in res and Bio.SeqUtils.seq1(res.get_resname()) not in ("X", "", " ")]
if not all_residues:
return None
res_and_res_id = [(res, res.get_id()[1]) for res in all_residues]
min_res_id = min([i[1] for i in res_and_res_id])
if min_res_id < 1:
print("Negative res id", chain, min_res_id)
factor = -1 * min_res_id + 1
res_and_res_id = [(res, res_id + factor) for res, res_id in res_and_res_id]
res_and_res_id_no_collisions = []
for res, res_id in res_and_res_id[::-1]:
if res_and_res_id_no_collisions and res_and_res_id_no_collisions[-1][1] == res_id:
# there is a collision, usually an insertion residue
res_and_res_id_no_collisions = [(i, j + 1) for i, j in res_and_res_id_no_collisions]
res_and_res_id_no_collisions.append((res, res_id))
first_res_id = min([i[1] for i in res_and_res_id_no_collisions])
factor = 1 - first_res_id # start from 1
new_chain = Bio.PDB.Chain.Chain(new_chain_id)
res_and_res_id_no_collisions.sort(key=lambda x: x[1])
for res, res_id in res_and_res_id_no_collisions:
chain.detach_child(res.id)
res.id = (" ", res_id + factor, " ")
new_chain.add(res)
return new_chain
def robust_renumber_protein(pdb_path: str, output_path: str):
if pdb_path.endswith(".pdb"):
pdb_parser = Bio.PDB.PDBParser(QUIET=True)
pdb_struct = pdb_parser.get_structure("original_pdb", pdb_path)
elif pdb_path.endswith(".cif"):
pdb_struct = Bio.PDB.MMCIFParser().get_structure("original_pdb", pdb_path)
else:
raise ValueError("Unknown file type", pdb_path)
assert len(list(pdb_struct)) == 1, "can't extract if more than one model"
model = next(iter(pdb_struct))
chains = list(model.get_chains())
new_model = Bio.PDB.Model.Model(0)
chain_ids = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"
for chain, chain_id in zip(chains, chain_ids):
new_chain = do_robust_chain_object_renumber(chain, chain_id)
if new_chain is None:
continue
new_model.add(new_chain)
new_struct = Bio.PDB.Structure.Structure("renumbered_pdb")
new_struct.add(new_model)
io = Bio.PDB.PDBIO()
io.set_structure(new_struct)
io.save(output_path)
def get_chain_object_to_seq(chain: Bio.PDB.Chain.Chain) -> str:
res_id_to_res = {res.get_id()[1]: res for res in chain.get_residues() if "CA" in res}
if len(res_id_to_res) == 0:
print("skipping empty chain", chain.get_id())
return ""
seq = ""
for i in range(1, max(res_id_to_res) + 1):
if i in res_id_to_res:
seq += Bio.SeqUtils.seq1(res_id_to_res[i].get_resname())
else:
seq += "X"
return seq
def get_sequence_from_pdb(pdb_path: str) -> Tuple[str, List[int]]:
pdb_parser = Bio.PDB.PDBParser(QUIET=True)
pdb_struct = pdb_parser.get_structure("original_pdb", pdb_path)
# chain_to_seq = {chain.id: get_chain_object_to_seq(chain) for chain in pdb_struct.get_chains()}
all_chain_seqs = [get_chain_object_to_seq(chain) for chain in pdb_struct.get_chains()]
chain_lengths = [len(seq) for seq in all_chain_seqs]
return ("X" * 20).join(all_chain_seqs), chain_lengths
from Bio import PDB
from Bio import pairwise2
def extract_sequence(chain):
seq = ''
residues = []
for res in chain.get_residues():
seq_res = Bio.SeqUtils.seq1(res.get_resname())
if seq_res in ('X', "", " "):
continue
seq += seq_res
residues.append(res)
return seq, residues
def map_residues(alignment, residues_gt, residues_pred):
idx_gt = 0
idx_pred = 0
mapping = []
for i in range(len(alignment.seqA)):
aa_gt = alignment.seqA[i]
aa_pred = alignment.seqB[i]
res_gt = None
res_pred = None
if aa_gt != '-':
res_gt = residues_gt[idx_gt]
idx_gt += 1
if aa_pred != '-':
res_pred = residues_pred[idx_pred]
idx_pred += 1
if res_gt and res_pred:
mapping.append((res_gt, res_pred))
return mapping
class ResidueSelect(PDB.Select):
def __init__(self, residues_to_select):
self.residues_to_select = set(residues_to_select)
def accept_residue(self, residue):
return residue in self.residues_to_select
def count_gapped_single_aa(alignment):
count_non_gap = 0
count_fully_gapped = 0
for i in range(1, len(alignment.seqA) - 1):
if alignment.seqA[i] != '-':
count_non_gap += 1
if alignment.seqA[i - 1] == '-' and alignment.seqA[i + 1] == '-':
count_fully_gapped += 1
top_ratio = count_fully_gapped / count_non_gap
count_non_gap = 0
count_fully_gapped = 0
for i in range(1, len(alignment.seqB) - 1):
if alignment.seqA[i] != '-':
count_non_gap += 1
if alignment.seqA[i - 1] == '-' and alignment.seqA[i + 1] == '-':
count_fully_gapped += 1
if count_fully_gapped / count_non_gap > top_ratio:
top_ratio = count_fully_gapped / count_non_gap
return top_ratio
def copy_residue_numbering(gt_pdb_path, input_pdb_path):
parser = PDB.PDBParser(QUIET=True)
gt_structure = parser.get_structure('gt', gt_pdb_path)
input_structure = parser.get_structure('input', input_pdb_path)
for res in list(input_structure.get_residues()):
res.id = (' ', res.get_id()[1] + 10000, ' ')
for gt_res, input_res in zip(gt_structure.get_residues(), input_structure.get_residues()):
input_res.id = gt_res.id
io = PDB.PDBIO()
io.set_structure(input_structure)
io.save(input_pdb_path)
def align_gt_and_input(gt_pdb_path, input_pdb_path, output_gt_path, output_input_path):
# print("aligning", gt_pdb_path, input_pdb_path, output_gt_path, output_input_path)
parser = PDB.PDBParser(QUIET=True)
gt_structure = parser.get_structure('gt', gt_pdb_path)
pred_structure = parser.get_structure('pred', input_pdb_path)
matched_residues_gt = []
matched_residues_pred = []
total_gt_size = len([res for res in gt_structure.get_residues() if "CA" in res])
used_chain_pred = []
total_mapping_size = 0
for chain_gt in gt_structure.get_chains():
seq_gt, residues_gt = extract_sequence(chain_gt)
best_alignment = None
best_chain_pred = None
best_score = -1
best_residues_pred = None
# Find the best matching chain in pred
for chain_pred in pred_structure.get_chains():
# print("checking", chain_pred.get_id(), chain_gt.get_id())
if chain_pred in used_chain_pred:
continue
seq_pred, residues_pred = extract_sequence(chain_pred)
# print(seq_gt)
# print(seq_pred)
# alignments = pairwise2.align.globalxx(seq_gt, seq_pred, one_alignment_only=True)
alignments = pairwise2.align.globalms(seq_gt, seq_pred, 2, -10000, -1, 0, one_alignment_only=True)
if not alignments:
continue
# print("checking2", chain_pred.get_id(), chain_gt.get_id())
alignment = alignments[0]
score = alignment.score
if score > best_score:
best_score = score
best_alignment = alignment
best_chain_pred = chain_pred
best_residues_pred = residues_pred
if best_alignment and count_gapped_single_aa(best_alignment) < 0.2:
mapping = map_residues(best_alignment, residues_gt, best_residues_pred)
total_mapping_size += len(mapping)
used_chain_pred.append(best_chain_pred)
for res_gt, res_pred in mapping:
matched_residues_gt.append(res_gt)
matched_residues_pred.append(res_pred)
else:
print(f"No matching chain found for chain {chain_gt.get_id()}")
assert total_mapping_size / total_gt_size > 0.8, \
f"Mapping size too low ({total_mapping_size}/{total_gt_size}), skipping"
print(f"Total mapping size: {total_mapping_size}")
# Write new PDB files with only matched residues
io = PDB.PDBIO()
io.set_structure(gt_structure)
io.save(output_gt_path, ResidueSelect(matched_residues_gt))
io = PDB.PDBIO()
io.set_structure(pred_structure)
io.save(output_input_path, ResidueSelect(matched_residues_pred))
copy_residue_numbering(output_gt_path, output_input_path)
def validate_matching_input_gt(gt_pdb_path, input_pdb_path):
gt_residues = [res for res in PDB.PDBParser().get_structure('gt', gt_pdb_path).get_residues()]
input_residues = [res for res in PDB.PDBParser().get_structure('input', input_pdb_path).get_residues()]
if len(gt_residues) != len(input_residues):
print(f"Residue count mismatch: {len(gt_residues)} vs {len(input_residues)}")
return -1
for res_gt, res_input in zip(gt_residues, input_residues):
if res_gt.get_resname() != res_input.get_resname():
print(f"Residue name mismatch: {res_gt.get_resname()} vs {res_input.get_resname()}")
return -1
return len(input_residues)
def download_pdb(pdb_name, output_folder):
output_path = os.path.join(output_folder, pdb_name)
if os.path.exists(output_path):
return output_path
print("downloading", pdb_name)
os.system(f'{GSUTIL_PATH} -m -q cp "gs://pinder/2024-02/pdbs/{pdb_name}" {output_path}')
return output_path
INTERFACE_MIN_ATOM_DIST = 5
def get_filtered_res(gt_r_res, gt_l_res, max_length: int):
gt_r_ca = np.array([res["CA"].coord for res in gt_r_res])
gt_l_ca = np.array([res["CA"].coord for res in gt_l_res])
if len(gt_r_res) + len(gt_l_res) < max_length:
# continue without cropping
print("no cropping needed", len(gt_r_res), len(gt_l_res))
return gt_r_res, gt_l_res
# close_residues = np.argwhere(scipy.spatial.distance.cdist(gt_r_ca, gt_l_ca) < INTERFACE_MIN_ATOM_DIST)
# gt_r_interface, gt_l_interface = set(), set()
# for i, j in close_residues:
# gt_r_interface.add(gt_r_res[i].id[1])
# gt_l_interface.add(gt_l_res[j].id[1])
inter_dists = gt_r_ca[:, np.newaxis, :] - gt_l_ca[np.newaxis, :, :]
inter_dists = np.sqrt((inter_dists ** 2).sum(-1))
min_inter_dist_per_gt_l_res = inter_dists.min(axis=0)
min_inter_dist_per_gt_r_res = inter_dists.min(axis=1)
assert min_inter_dist_per_gt_l_res.shape[0] == len(gt_l_res)
assert min_inter_dist_per_gt_r_res.shape[0] == len(gt_r_res)
min_r_res, max_r_res = min(min_inter_dist_per_gt_r_res), max(min_inter_dist_per_gt_r_res)
min_l_res, max_l_res = min(min_inter_dist_per_gt_l_res), max(min_inter_dist_per_gt_l_res)
r_pocket = [res for res in gt_r_res if min_r_res <= res.id[1] <= max_r_res]
l_pocket = [res for res in gt_l_res if min_l_res <= res.id[1] <= max_l_res]
if len(r_pocket) + len(l_pocket) < max_length:
# add extra residues to both chains to get a total of max_length
res_r_before = [res for res in gt_r_res if res.id[1] < min_r_res]
res_r_after = [res for res in gt_r_res if res.id[1] > max_r_res]
res_l_before = [res for res in gt_l_res if res.id[1] < min_l_res]
res_l_after = [res for res in gt_l_res if res.id[1] > max_l_res]
extra_to_add = max_length - len(r_pocket) - len(l_pocket)
actions = []
if len(res_r_before) > 0:
actions.append("add_r_before")
if len(res_r_after) > 0:
actions.append("add_r_after")
if len(res_l_before) > 0:
actions.append("add_l_before")
if len(res_l_after) > 0:
actions.append("add_l_after")
while extra_to_add > 0 and actions:
action = random.choice(actions)
if action == "add_r_before":
r_pocket.insert(0, res_r_before.pop())
if not len(res_r_before):
actions.remove("add_r_before")
elif action == "add_r_after":
r_pocket.append(res_r_after.pop())
if not len(res_r_after):
actions.remove("add_r_after")
elif action == "add_l_before":
l_pocket.insert(0, res_l_before.pop())
if not len(res_l_before):
actions.remove("add_l_before")
elif action == "add_l_after":
l_pocket.append(res_l_after.pop())
if not len(res_l_after):
actions.remove("add_l_after")
extra_to_add -= 1
print("Extended pocket sizes", len(r_pocket), len(l_pocket), "extra_to_add", extra_to_add)
return r_pocket, l_pocket
print("cropping simply")
# remove residues that are farthest from the interface
res_and_dist_r = [(res, min_inter_dist_per_gt_r_res[res_idx]) for res_idx, res in enumerate(gt_r_res)]
res_and_dist_l = [(res, min_inter_dist_per_gt_l_res[res_idx]) for res_idx, res in enumerate(gt_l_res)]
res_and_dist_r = [(res, dist) for res, dist in res_and_dist_r if res in r_pocket]
res_and_dist_l = [(res, dist) for res, dist in res_and_dist_l if res in l_pocket]
res_and_dist_r = sorted(res_and_dist_r, key=lambda x: x[1], reverse=True)
res_and_dist_l = sorted(res_and_dist_l, key=lambda x: x[1], reverse=True)
while len(res_and_dist_r) + len(res_and_dist_l) > max_length:
if res_and_dist_r[0][1] > res_and_dist_l[0][1]:
res_and_dist_r.pop(0)
else:
res_and_dist_l.pop(0)
return [res for res, _ in res_and_dist_r], [res for res, _ in res_and_dist_l]
def prepare_holo(row, tmp_dir_path, max_length: int):
tmp_gt_r_pdb = os.path.join(tmp_dir_path, f"tmp_{row.id}_gt_r.pdb")
tmp_gt_l_pdb = os.path.join(tmp_dir_path, f"tmp_{row.id}_gt_l.pdb")
if os.path.exists(tmp_gt_r_pdb) and os.path.exists(tmp_gt_l_pdb):
return tmp_gt_r_pdb, tmp_gt_l_pdb
holo_r_pdb = download_pdb(row.holo_R_pdb, tmp_dir_path)
holo_l_pdb = download_pdb(row.holo_L_pdb, tmp_dir_path)
# make gt and apo that matches
robust_renumber_protein(holo_r_pdb, tmp_gt_r_pdb)
robust_renumber_protein(holo_l_pdb, tmp_gt_l_pdb)
parser = PDB.PDBParser(QUIET=True)
gt_r_prot = parser.get_structure('r', tmp_gt_r_pdb)
gt_l_prot = parser.get_structure('l', tmp_gt_l_pdb)
assert len(list(gt_r_prot.get_chains())) == 1, "can't extract if more than one chain"
assert len(list(gt_l_prot.get_chains())) == 1, "can't extract if more than one chain"
gt_r_res = [res for res in gt_r_prot.get_residues() if "CA" in res]
gt_l_res = [res for res in gt_l_prot.get_residues() if "CA" in res]
to_keep_r, to_keep_l = get_filtered_res(gt_r_res, gt_l_res, max_length)
io = PDB.PDBIO()
io.set_structure(gt_r_prot)
io.save(tmp_gt_r_pdb, ResidueSelect(to_keep_r))
io = PDB.PDBIO()
io.set_structure(gt_l_prot)
io.save(tmp_gt_l_pdb, ResidueSelect(to_keep_l))
return tmp_gt_r_pdb, tmp_gt_l_pdb
def generate_input_pdbs(tmp_input_r_pdb, tmp_input_l_pdb, tmp_gt_r_pdb, tmp_gt_l_pdb,
input_r_output_pdb, input_l_output_pdb, gt_r_output_pdb, gt_l_output_pdb):
# print("preparing input pdbs", gt_r_output_pdb)
if not os.path.exists(tmp_input_r_pdb) or not os.path.exists(tmp_input_l_pdb):
raise False
try:
align_gt_and_input(tmp_gt_r_pdb, tmp_input_r_pdb, gt_r_output_pdb, input_r_output_pdb)
protein_size_r = validate_matching_input_gt(gt_r_output_pdb, input_r_output_pdb)
assert protein_size_r > -1, "Failed to validate matching input and gt"
align_gt_and_input(tmp_gt_l_pdb, tmp_input_l_pdb, gt_l_output_pdb, input_l_output_pdb)
protein_size_l = validate_matching_input_gt(gt_l_output_pdb, input_l_output_pdb)
assert protein_size_l > -1, "Failed to validate matching input and gt"
except Exception as e:
print("Failed to align", e)
if os.path.exists(gt_r_output_pdb):
os.remove(gt_r_output_pdb)
if os.path.exists(gt_l_output_pdb):
os.remove(gt_l_output_pdb)
if os.path.exists(input_r_output_pdb):
os.remove(input_r_output_pdb)
if os.path.exists(input_l_output_pdb):
os.remove(input_l_output_pdb)
return False
return True
def _get_rel_path(abs_path):
return os.path.join(os.path.basename(os.path.dirname(abs_path)), os.path.basename(abs_path))
def main(start_ind: Optional[int] = None, end_ind: Optional[int] = None):
print("running with", start_ind, end_ind)
os.makedirs(OUTPUT_FOLDER, exist_ok=True)
output_models_folder = os.path.join(OUTPUT_FOLDER, "pinder_models")
output_train_jsons_folder = os.path.join(OUTPUT_FOLDER, "pinder_jsons_train")
output_val_jsons_folder = os.path.join(OUTPUT_FOLDER, "pinder_jsons_val")
output_test_jsons_folder = os.path.join(OUTPUT_FOLDER, "pinder_jsons_test")
output_info = os.path.join(OUTPUT_FOLDER, "pinder_generation_info.csv")
os.makedirs(output_models_folder, exist_ok=True)
os.makedirs(output_train_jsons_folder, exist_ok=True)
os.makedirs(output_val_jsons_folder, exist_ok=True)
os.makedirs(output_test_jsons_folder, exist_ok=True)
split_to_folder = {
"train": output_train_jsons_folder,
"val": output_val_jsons_folder,
"test": output_test_jsons_folder
}
# output_info_file = open(output_info, "a+")
systems = pd.read_parquet(PINDER_ANNOTATIONS)
systems = systems[systems.split.isin(['train', 'val', 'test'])]
cluster_ids = systems["cluster_id"].value_counts()
cluster_ids = cluster_ids[cluster_ids >= 1]
print("There are", len(cluster_ids), "clusters")
# clusters_with_data = 0
# for cluster_id in cluster_ids.index:
# cluster_systems = systems[systems["cluster_id"] == cluster_id]
# with_apo = cluster_systems[cluster_systems.apo_R & cluster_systems.apo_L]
# if len(with_apo) > 0:
# print("Cluster", cluster_id, "has", len(with_apo), "systems with apo")
# clusters_with_data += 1
# continue
# with_pred = cluster_systems[cluster_systems.predicted_R & cluster_systems.predicted_L]
# if len(with_pred) > 0:
# print("Cluster", cluster_id, "has", len(with_pred), "systems with pred")
# clusters_with_data += 1
# continue
# print("There are", clusters_with_data, "clusters with data out of", len(cluster_ids))
for cluster_ind, cluster_id in enumerate(sorted(cluster_ids.index)):
if (start_ind is not None and cluster_ind < start_ind) or (end_ind is not None and cluster_ind >= end_ind):
continue
# if cluster_id != "cluster_10004_p":
# continue
tmp_dir_path = os.path.join(OUTPUT_FOLDER, "tmp_" + cluster_id)
os.makedirs(tmp_dir_path, exist_ok=True)
system_id_to_method = {}
cluster_systems = systems[systems["cluster_id"] == cluster_id]
print("--- Starting cluster", cluster_ind, cluster_id, "size", cluster_systems.shape)
with_apo = cluster_systems[cluster_systems.apo_R & cluster_systems.apo_L]
print("*** APO *** Cluster", cluster_id, "has", len(with_apo), "systems with apo")
for try_counter, row in enumerate(with_apo.itertuples()):
if row.split not in ("test", "val") \
and (try_counter >= MAX_TRIES_OF_METHOD or len(system_id_to_method) >= MAX_SYSTEMS_FOR_CLUSTER):
continue
print("-- Trying to prepare apo", row.id, row.split)
try:
tmp_gt_r_pdb, tmp_gt_l_pdb = prepare_holo(row, tmp_dir_path, MAX_LENGTH)
gt_r_output_path = os.path.join(output_models_folder, f"{row.id}_gt_r.pdb")
gt_l_output_path = os.path.join(output_models_folder, f"{row.id}_gt_l.pdb")
input_r_output_path = os.path.join(output_models_folder, f"{row.id}_input_r.pdb")
input_l_output_path = os.path.join(output_models_folder, f"{row.id}_input_l.pdb")
input_r_pdb_path = download_pdb(row.apo_R_pdb, tmp_dir_path)
input_l_pdb_path = download_pdb(row.apo_L_pdb, tmp_dir_path)
if generate_input_pdbs(input_r_pdb_path, input_l_pdb_path, tmp_gt_r_pdb, tmp_gt_l_pdb,
input_r_output_path, input_l_output_path, gt_r_output_path, gt_l_output_path):
system_id_to_method[row.id] = "apo"
except Exception as e:
print("Failed to prepare apo", row.id, e)
continue
with_pred = cluster_systems[cluster_systems.predicted_R & cluster_systems.predicted_L]
print("*** Pred *** Cluster", cluster_id, "has", len(with_pred), "systems with pred")
for try_counter, row in enumerate(with_pred.itertuples()):
if row.id in system_id_to_method:
continue
if row.split not in ("test", "val") \
and (try_counter >= MAX_TRIES_OF_METHOD or len(system_id_to_method) >= MAX_SYSTEMS_FOR_CLUSTER):
continue
print("-- Trying to prepare pred", row.id, row.split)
try:
tmp_gt_r_pdb, tmp_gt_l_pdb = prepare_holo(row, tmp_dir_path, MAX_LENGTH)
gt_r_output_path = os.path.join(output_models_folder, f"{row.id}_gt_r.pdb")
gt_l_output_path = os.path.join(output_models_folder, f"{row.id}_gt_l.pdb")
input_r_output_path = os.path.join(output_models_folder, f"{row.id}_input_r.pdb")
input_l_output_path = os.path.join(output_models_folder, f"{row.id}_input_l.pdb")
input_r_pdb_path = download_pdb(row.predicted_R_pdb, tmp_dir_path)
input_l_pdb_path = download_pdb(row.predicted_L_pdb, tmp_dir_path)
if generate_input_pdbs(input_r_pdb_path, input_l_pdb_path, tmp_gt_r_pdb, tmp_gt_l_pdb,
input_r_output_path, input_l_output_path, gt_r_output_path, gt_l_output_path):
system_id_to_method[row.id] = "pred"
except Exception as e:
print("Failed to prepare pred", row.id, e)
# default - use gt
print("*** GT *** ")
for row in cluster_systems.itertuples():
if row.id in system_id_to_method:
continue
if row.split not in ("test", "val") and len(system_id_to_method) >= MAX_SYSTEMS_FOR_CLUSTER:
continue
try:
tmp_gt_r_pdb, tmp_gt_l_pdb = prepare_holo(row, tmp_dir_path, MAX_LENGTH)
gt_r_output_path = os.path.join(output_models_folder, f"{row.id}_gt_r.pdb")
gt_l_output_path = os.path.join(output_models_folder, f"{row.id}_gt_l.pdb")
input_r_output_path = os.path.join(output_models_folder, f"{row.id}_input_r.pdb")
input_l_output_path = os.path.join(output_models_folder, f"{row.id}_input_l.pdb")
shutil.copyfile(tmp_gt_r_pdb, gt_r_output_path)
shutil.copyfile(tmp_gt_r_pdb, input_r_output_path)
shutil.copyfile(tmp_gt_l_pdb, gt_l_output_path)
shutil.copyfile(tmp_gt_l_pdb, input_l_output_path)
system_id_to_method[row.id] = "gt"
except Exception as e:
print("Failed to prepare gt", row.id, e)
# save jsons
for row in cluster_systems.itertuples():
if row.id not in system_id_to_method:
continue
output_json_path = os.path.join(split_to_folder[row.split], f"{row.id}.json")
gt_r_output_path = os.path.join(output_models_folder, f"{row.id}_gt_r.pdb")
gt_l_output_path = os.path.join(output_models_folder, f"{row.id}_gt_l.pdb")
input_r_output_path = os.path.join(output_models_folder, f"{row.id}_input_r.pdb")
input_l_output_path = os.path.join(output_models_folder, f"{row.id}_input_l.pdb")
protein_r_seq_len = validate_matching_input_gt(gt_r_output_path, input_r_output_path)
protein_l_seq_len = validate_matching_input_gt(gt_l_output_path, input_l_output_path)
json_data = {
"input_r_structure": _get_rel_path(input_r_output_path),
"input_l_structure": _get_rel_path(input_l_output_path),
"gt_r_structure": _get_rel_path(gt_r_output_path),
"gt_l_structure": _get_rel_path(gt_l_output_path),
"resolution": 1.0,
"protein_r_seq_len": protein_r_seq_len,
"protein_l_seq_len": protein_l_seq_len,
"uniprot_r": row.uniprot_R,
"uniprot_l": row.uniprot_L,
"cluster": row.cluster_id,
"input_protein_source": system_id_to_method[row.id],
"pdb_id": row.id,
}
open(output_json_path, "w").write(json.dumps(json_data, indent=4))
print("******* saved", row.id, system_id_to_method[row.id], flush=True)
shutil.rmtree(tmp_dir_path)
print("total systems", len(systems))
if __name__ == '__main__':
if len(sys.argv) == 3:
main(int(sys.argv[1]), int(sys.argv[2]))
else:
main()