Spaces:
Sleeping
Sleeping
import json | |
import os | |
import shutil | |
import random | |
import sys | |
from typing import List, Tuple, Optional | |
import Bio.PDB | |
import Bio.SeqUtils | |
import pandas as pd | |
import numpy as np | |
OUTPUT_FOLDER = "/tmp/output" | |
PINDER_ANNOTATIONS = "/tmp/index.parquet" | |
GSUTIL_PATH = "/tmp/google-cloud-sdk/bin/gsutil" | |
MAX_SYSTEMS_FOR_CLUSTER = 2 | |
MAX_LENGTH = 350 | |
MAX_TRIES_OF_METHOD = 5 | |
def do_robust_chain_object_renumber(chain: Bio.PDB.Chain.Chain, new_chain_id: str) -> Optional[Bio.PDB.Chain.Chain]: | |
all_residues = [res for res in chain.get_residues() | |
if "CA" in res and Bio.SeqUtils.seq1(res.get_resname()) not in ("X", "", " ")] | |
if not all_residues: | |
return None | |
res_and_res_id = [(res, res.get_id()[1]) for res in all_residues] | |
min_res_id = min([i[1] for i in res_and_res_id]) | |
if min_res_id < 1: | |
print("Negative res id", chain, min_res_id) | |
factor = -1 * min_res_id + 1 | |
res_and_res_id = [(res, res_id + factor) for res, res_id in res_and_res_id] | |
res_and_res_id_no_collisions = [] | |
for res, res_id in res_and_res_id[::-1]: | |
if res_and_res_id_no_collisions and res_and_res_id_no_collisions[-1][1] == res_id: | |
# there is a collision, usually an insertion residue | |
res_and_res_id_no_collisions = [(i, j + 1) for i, j in res_and_res_id_no_collisions] | |
res_and_res_id_no_collisions.append((res, res_id)) | |
first_res_id = min([i[1] for i in res_and_res_id_no_collisions]) | |
factor = 1 - first_res_id # start from 1 | |
new_chain = Bio.PDB.Chain.Chain(new_chain_id) | |
res_and_res_id_no_collisions.sort(key=lambda x: x[1]) | |
for res, res_id in res_and_res_id_no_collisions: | |
chain.detach_child(res.id) | |
res.id = (" ", res_id + factor, " ") | |
new_chain.add(res) | |
return new_chain | |
def robust_renumber_protein(pdb_path: str, output_path: str): | |
if pdb_path.endswith(".pdb"): | |
pdb_parser = Bio.PDB.PDBParser(QUIET=True) | |
pdb_struct = pdb_parser.get_structure("original_pdb", pdb_path) | |
elif pdb_path.endswith(".cif"): | |
pdb_struct = Bio.PDB.MMCIFParser().get_structure("original_pdb", pdb_path) | |
else: | |
raise ValueError("Unknown file type", pdb_path) | |
assert len(list(pdb_struct)) == 1, "can't extract if more than one model" | |
model = next(iter(pdb_struct)) | |
chains = list(model.get_chains()) | |
new_model = Bio.PDB.Model.Model(0) | |
chain_ids = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789" | |
for chain, chain_id in zip(chains, chain_ids): | |
new_chain = do_robust_chain_object_renumber(chain, chain_id) | |
if new_chain is None: | |
continue | |
new_model.add(new_chain) | |
new_struct = Bio.PDB.Structure.Structure("renumbered_pdb") | |
new_struct.add(new_model) | |
io = Bio.PDB.PDBIO() | |
io.set_structure(new_struct) | |
io.save(output_path) | |
def get_chain_object_to_seq(chain: Bio.PDB.Chain.Chain) -> str: | |
res_id_to_res = {res.get_id()[1]: res for res in chain.get_residues() if "CA" in res} | |
if len(res_id_to_res) == 0: | |
print("skipping empty chain", chain.get_id()) | |
return "" | |
seq = "" | |
for i in range(1, max(res_id_to_res) + 1): | |
if i in res_id_to_res: | |
seq += Bio.SeqUtils.seq1(res_id_to_res[i].get_resname()) | |
else: | |
seq += "X" | |
return seq | |
def get_sequence_from_pdb(pdb_path: str) -> Tuple[str, List[int]]: | |
pdb_parser = Bio.PDB.PDBParser(QUIET=True) | |
pdb_struct = pdb_parser.get_structure("original_pdb", pdb_path) | |
# chain_to_seq = {chain.id: get_chain_object_to_seq(chain) for chain in pdb_struct.get_chains()} | |
all_chain_seqs = [get_chain_object_to_seq(chain) for chain in pdb_struct.get_chains()] | |
chain_lengths = [len(seq) for seq in all_chain_seqs] | |
return ("X" * 20).join(all_chain_seqs), chain_lengths | |
from Bio import PDB | |
from Bio import pairwise2 | |
def extract_sequence(chain): | |
seq = '' | |
residues = [] | |
for res in chain.get_residues(): | |
seq_res = Bio.SeqUtils.seq1(res.get_resname()) | |
if seq_res in ('X', "", " "): | |
continue | |
seq += seq_res | |
residues.append(res) | |
return seq, residues | |
def map_residues(alignment, residues_gt, residues_pred): | |
idx_gt = 0 | |
idx_pred = 0 | |
mapping = [] | |
for i in range(len(alignment.seqA)): | |
aa_gt = alignment.seqA[i] | |
aa_pred = alignment.seqB[i] | |
res_gt = None | |
res_pred = None | |
if aa_gt != '-': | |
res_gt = residues_gt[idx_gt] | |
idx_gt += 1 | |
if aa_pred != '-': | |
res_pred = residues_pred[idx_pred] | |
idx_pred += 1 | |
if res_gt and res_pred: | |
mapping.append((res_gt, res_pred)) | |
return mapping | |
class ResidueSelect(PDB.Select): | |
def __init__(self, residues_to_select): | |
self.residues_to_select = set(residues_to_select) | |
def accept_residue(self, residue): | |
return residue in self.residues_to_select | |
def count_gapped_single_aa(alignment): | |
count_non_gap = 0 | |
count_fully_gapped = 0 | |
for i in range(1, len(alignment.seqA) - 1): | |
if alignment.seqA[i] != '-': | |
count_non_gap += 1 | |
if alignment.seqA[i - 1] == '-' and alignment.seqA[i + 1] == '-': | |
count_fully_gapped += 1 | |
top_ratio = count_fully_gapped / count_non_gap | |
count_non_gap = 0 | |
count_fully_gapped = 0 | |
for i in range(1, len(alignment.seqB) - 1): | |
if alignment.seqA[i] != '-': | |
count_non_gap += 1 | |
if alignment.seqA[i - 1] == '-' and alignment.seqA[i + 1] == '-': | |
count_fully_gapped += 1 | |
if count_fully_gapped / count_non_gap > top_ratio: | |
top_ratio = count_fully_gapped / count_non_gap | |
return top_ratio | |
def copy_residue_numbering(gt_pdb_path, input_pdb_path): | |
parser = PDB.PDBParser(QUIET=True) | |
gt_structure = parser.get_structure('gt', gt_pdb_path) | |
input_structure = parser.get_structure('input', input_pdb_path) | |
for res in list(input_structure.get_residues()): | |
res.id = (' ', res.get_id()[1] + 10000, ' ') | |
for gt_res, input_res in zip(gt_structure.get_residues(), input_structure.get_residues()): | |
input_res.id = gt_res.id | |
io = PDB.PDBIO() | |
io.set_structure(input_structure) | |
io.save(input_pdb_path) | |
def align_gt_and_input(gt_pdb_path, input_pdb_path, output_gt_path, output_input_path): | |
# print("aligning", gt_pdb_path, input_pdb_path, output_gt_path, output_input_path) | |
parser = PDB.PDBParser(QUIET=True) | |
gt_structure = parser.get_structure('gt', gt_pdb_path) | |
pred_structure = parser.get_structure('pred', input_pdb_path) | |
matched_residues_gt = [] | |
matched_residues_pred = [] | |
total_gt_size = len([res for res in gt_structure.get_residues() if "CA" in res]) | |
used_chain_pred = [] | |
total_mapping_size = 0 | |
for chain_gt in gt_structure.get_chains(): | |
seq_gt, residues_gt = extract_sequence(chain_gt) | |
best_alignment = None | |
best_chain_pred = None | |
best_score = -1 | |
best_residues_pred = None | |
# Find the best matching chain in pred | |
for chain_pred in pred_structure.get_chains(): | |
# print("checking", chain_pred.get_id(), chain_gt.get_id()) | |
if chain_pred in used_chain_pred: | |
continue | |
seq_pred, residues_pred = extract_sequence(chain_pred) | |
# print(seq_gt) | |
# print(seq_pred) | |
# alignments = pairwise2.align.globalxx(seq_gt, seq_pred, one_alignment_only=True) | |
alignments = pairwise2.align.globalms(seq_gt, seq_pred, 2, -10000, -1, 0, one_alignment_only=True) | |
if not alignments: | |
continue | |
# print("checking2", chain_pred.get_id(), chain_gt.get_id()) | |
alignment = alignments[0] | |
score = alignment.score | |
if score > best_score: | |
best_score = score | |
best_alignment = alignment | |
best_chain_pred = chain_pred | |
best_residues_pred = residues_pred | |
if best_alignment and count_gapped_single_aa(best_alignment) < 0.2: | |
mapping = map_residues(best_alignment, residues_gt, best_residues_pred) | |
total_mapping_size += len(mapping) | |
used_chain_pred.append(best_chain_pred) | |
for res_gt, res_pred in mapping: | |
matched_residues_gt.append(res_gt) | |
matched_residues_pred.append(res_pred) | |
else: | |
print(f"No matching chain found for chain {chain_gt.get_id()}") | |
assert total_mapping_size / total_gt_size > 0.8, \ | |
f"Mapping size too low ({total_mapping_size}/{total_gt_size}), skipping" | |
print(f"Total mapping size: {total_mapping_size}") | |
# Write new PDB files with only matched residues | |
io = PDB.PDBIO() | |
io.set_structure(gt_structure) | |
io.save(output_gt_path, ResidueSelect(matched_residues_gt)) | |
io = PDB.PDBIO() | |
io.set_structure(pred_structure) | |
io.save(output_input_path, ResidueSelect(matched_residues_pred)) | |
copy_residue_numbering(output_gt_path, output_input_path) | |
def validate_matching_input_gt(gt_pdb_path, input_pdb_path): | |
gt_residues = [res for res in PDB.PDBParser().get_structure('gt', gt_pdb_path).get_residues()] | |
input_residues = [res for res in PDB.PDBParser().get_structure('input', input_pdb_path).get_residues()] | |
if len(gt_residues) != len(input_residues): | |
print(f"Residue count mismatch: {len(gt_residues)} vs {len(input_residues)}") | |
return -1 | |
for res_gt, res_input in zip(gt_residues, input_residues): | |
if res_gt.get_resname() != res_input.get_resname(): | |
print(f"Residue name mismatch: {res_gt.get_resname()} vs {res_input.get_resname()}") | |
return -1 | |
return len(input_residues) | |
def download_pdb(pdb_name, output_folder): | |
output_path = os.path.join(output_folder, pdb_name) | |
if os.path.exists(output_path): | |
return output_path | |
print("downloading", pdb_name) | |
os.system(f'{GSUTIL_PATH} -m -q cp "gs://pinder/2024-02/pdbs/{pdb_name}" {output_path}') | |
return output_path | |
INTERFACE_MIN_ATOM_DIST = 5 | |
def get_filtered_res(gt_r_res, gt_l_res, max_length: int): | |
gt_r_ca = np.array([res["CA"].coord for res in gt_r_res]) | |
gt_l_ca = np.array([res["CA"].coord for res in gt_l_res]) | |
if len(gt_r_res) + len(gt_l_res) < max_length: | |
# continue without cropping | |
print("no cropping needed", len(gt_r_res), len(gt_l_res)) | |
return gt_r_res, gt_l_res | |
# close_residues = np.argwhere(scipy.spatial.distance.cdist(gt_r_ca, gt_l_ca) < INTERFACE_MIN_ATOM_DIST) | |
# gt_r_interface, gt_l_interface = set(), set() | |
# for i, j in close_residues: | |
# gt_r_interface.add(gt_r_res[i].id[1]) | |
# gt_l_interface.add(gt_l_res[j].id[1]) | |
inter_dists = gt_r_ca[:, np.newaxis, :] - gt_l_ca[np.newaxis, :, :] | |
inter_dists = np.sqrt((inter_dists ** 2).sum(-1)) | |
min_inter_dist_per_gt_l_res = inter_dists.min(axis=0) | |
min_inter_dist_per_gt_r_res = inter_dists.min(axis=1) | |
assert min_inter_dist_per_gt_l_res.shape[0] == len(gt_l_res) | |
assert min_inter_dist_per_gt_r_res.shape[0] == len(gt_r_res) | |
min_r_res, max_r_res = min(min_inter_dist_per_gt_r_res), max(min_inter_dist_per_gt_r_res) | |
min_l_res, max_l_res = min(min_inter_dist_per_gt_l_res), max(min_inter_dist_per_gt_l_res) | |
r_pocket = [res for res in gt_r_res if min_r_res <= res.id[1] <= max_r_res] | |
l_pocket = [res for res in gt_l_res if min_l_res <= res.id[1] <= max_l_res] | |
if len(r_pocket) + len(l_pocket) < max_length: | |
# add extra residues to both chains to get a total of max_length | |
res_r_before = [res for res in gt_r_res if res.id[1] < min_r_res] | |
res_r_after = [res for res in gt_r_res if res.id[1] > max_r_res] | |
res_l_before = [res for res in gt_l_res if res.id[1] < min_l_res] | |
res_l_after = [res for res in gt_l_res if res.id[1] > max_l_res] | |
extra_to_add = max_length - len(r_pocket) - len(l_pocket) | |
actions = [] | |
if len(res_r_before) > 0: | |
actions.append("add_r_before") | |
if len(res_r_after) > 0: | |
actions.append("add_r_after") | |
if len(res_l_before) > 0: | |
actions.append("add_l_before") | |
if len(res_l_after) > 0: | |
actions.append("add_l_after") | |
while extra_to_add > 0 and actions: | |
action = random.choice(actions) | |
if action == "add_r_before": | |
r_pocket.insert(0, res_r_before.pop()) | |
if not len(res_r_before): | |
actions.remove("add_r_before") | |
elif action == "add_r_after": | |
r_pocket.append(res_r_after.pop()) | |
if not len(res_r_after): | |
actions.remove("add_r_after") | |
elif action == "add_l_before": | |
l_pocket.insert(0, res_l_before.pop()) | |
if not len(res_l_before): | |
actions.remove("add_l_before") | |
elif action == "add_l_after": | |
l_pocket.append(res_l_after.pop()) | |
if not len(res_l_after): | |
actions.remove("add_l_after") | |
extra_to_add -= 1 | |
print("Extended pocket sizes", len(r_pocket), len(l_pocket), "extra_to_add", extra_to_add) | |
return r_pocket, l_pocket | |
print("cropping simply") | |
# remove residues that are farthest from the interface | |
res_and_dist_r = [(res, min_inter_dist_per_gt_r_res[res_idx]) for res_idx, res in enumerate(gt_r_res)] | |
res_and_dist_l = [(res, min_inter_dist_per_gt_l_res[res_idx]) for res_idx, res in enumerate(gt_l_res)] | |
res_and_dist_r = [(res, dist) for res, dist in res_and_dist_r if res in r_pocket] | |
res_and_dist_l = [(res, dist) for res, dist in res_and_dist_l if res in l_pocket] | |
res_and_dist_r = sorted(res_and_dist_r, key=lambda x: x[1], reverse=True) | |
res_and_dist_l = sorted(res_and_dist_l, key=lambda x: x[1], reverse=True) | |
while len(res_and_dist_r) + len(res_and_dist_l) > max_length: | |
if res_and_dist_r[0][1] > res_and_dist_l[0][1]: | |
res_and_dist_r.pop(0) | |
else: | |
res_and_dist_l.pop(0) | |
return [res for res, _ in res_and_dist_r], [res for res, _ in res_and_dist_l] | |
def prepare_holo(row, tmp_dir_path, max_length: int): | |
tmp_gt_r_pdb = os.path.join(tmp_dir_path, f"tmp_{row.id}_gt_r.pdb") | |
tmp_gt_l_pdb = os.path.join(tmp_dir_path, f"tmp_{row.id}_gt_l.pdb") | |
if os.path.exists(tmp_gt_r_pdb) and os.path.exists(tmp_gt_l_pdb): | |
return tmp_gt_r_pdb, tmp_gt_l_pdb | |
holo_r_pdb = download_pdb(row.holo_R_pdb, tmp_dir_path) | |
holo_l_pdb = download_pdb(row.holo_L_pdb, tmp_dir_path) | |
# make gt and apo that matches | |
robust_renumber_protein(holo_r_pdb, tmp_gt_r_pdb) | |
robust_renumber_protein(holo_l_pdb, tmp_gt_l_pdb) | |
parser = PDB.PDBParser(QUIET=True) | |
gt_r_prot = parser.get_structure('r', tmp_gt_r_pdb) | |
gt_l_prot = parser.get_structure('l', tmp_gt_l_pdb) | |
assert len(list(gt_r_prot.get_chains())) == 1, "can't extract if more than one chain" | |
assert len(list(gt_l_prot.get_chains())) == 1, "can't extract if more than one chain" | |
gt_r_res = [res for res in gt_r_prot.get_residues() if "CA" in res] | |
gt_l_res = [res for res in gt_l_prot.get_residues() if "CA" in res] | |
to_keep_r, to_keep_l = get_filtered_res(gt_r_res, gt_l_res, max_length) | |
io = PDB.PDBIO() | |
io.set_structure(gt_r_prot) | |
io.save(tmp_gt_r_pdb, ResidueSelect(to_keep_r)) | |
io = PDB.PDBIO() | |
io.set_structure(gt_l_prot) | |
io.save(tmp_gt_l_pdb, ResidueSelect(to_keep_l)) | |
return tmp_gt_r_pdb, tmp_gt_l_pdb | |
def generate_input_pdbs(tmp_input_r_pdb, tmp_input_l_pdb, tmp_gt_r_pdb, tmp_gt_l_pdb, | |
input_r_output_pdb, input_l_output_pdb, gt_r_output_pdb, gt_l_output_pdb): | |
# print("preparing input pdbs", gt_r_output_pdb) | |
if not os.path.exists(tmp_input_r_pdb) or not os.path.exists(tmp_input_l_pdb): | |
raise False | |
try: | |
align_gt_and_input(tmp_gt_r_pdb, tmp_input_r_pdb, gt_r_output_pdb, input_r_output_pdb) | |
protein_size_r = validate_matching_input_gt(gt_r_output_pdb, input_r_output_pdb) | |
assert protein_size_r > -1, "Failed to validate matching input and gt" | |
align_gt_and_input(tmp_gt_l_pdb, tmp_input_l_pdb, gt_l_output_pdb, input_l_output_pdb) | |
protein_size_l = validate_matching_input_gt(gt_l_output_pdb, input_l_output_pdb) | |
assert protein_size_l > -1, "Failed to validate matching input and gt" | |
except Exception as e: | |
print("Failed to align", e) | |
if os.path.exists(gt_r_output_pdb): | |
os.remove(gt_r_output_pdb) | |
if os.path.exists(gt_l_output_pdb): | |
os.remove(gt_l_output_pdb) | |
if os.path.exists(input_r_output_pdb): | |
os.remove(input_r_output_pdb) | |
if os.path.exists(input_l_output_pdb): | |
os.remove(input_l_output_pdb) | |
return False | |
return True | |
def _get_rel_path(abs_path): | |
return os.path.join(os.path.basename(os.path.dirname(abs_path)), os.path.basename(abs_path)) | |
def main(start_ind: Optional[int] = None, end_ind: Optional[int] = None): | |
print("running with", start_ind, end_ind) | |
os.makedirs(OUTPUT_FOLDER, exist_ok=True) | |
output_models_folder = os.path.join(OUTPUT_FOLDER, "pinder_models") | |
output_train_jsons_folder = os.path.join(OUTPUT_FOLDER, "pinder_jsons_train") | |
output_val_jsons_folder = os.path.join(OUTPUT_FOLDER, "pinder_jsons_val") | |
output_test_jsons_folder = os.path.join(OUTPUT_FOLDER, "pinder_jsons_test") | |
output_info = os.path.join(OUTPUT_FOLDER, "pinder_generation_info.csv") | |
os.makedirs(output_models_folder, exist_ok=True) | |
os.makedirs(output_train_jsons_folder, exist_ok=True) | |
os.makedirs(output_val_jsons_folder, exist_ok=True) | |
os.makedirs(output_test_jsons_folder, exist_ok=True) | |
split_to_folder = { | |
"train": output_train_jsons_folder, | |
"val": output_val_jsons_folder, | |
"test": output_test_jsons_folder | |
} | |
# output_info_file = open(output_info, "a+") | |
systems = pd.read_parquet(PINDER_ANNOTATIONS) | |
systems = systems[systems.split.isin(['train', 'val', 'test'])] | |
cluster_ids = systems["cluster_id"].value_counts() | |
cluster_ids = cluster_ids[cluster_ids >= 1] | |
print("There are", len(cluster_ids), "clusters") | |
# clusters_with_data = 0 | |
# for cluster_id in cluster_ids.index: | |
# cluster_systems = systems[systems["cluster_id"] == cluster_id] | |
# with_apo = cluster_systems[cluster_systems.apo_R & cluster_systems.apo_L] | |
# if len(with_apo) > 0: | |
# print("Cluster", cluster_id, "has", len(with_apo), "systems with apo") | |
# clusters_with_data += 1 | |
# continue | |
# with_pred = cluster_systems[cluster_systems.predicted_R & cluster_systems.predicted_L] | |
# if len(with_pred) > 0: | |
# print("Cluster", cluster_id, "has", len(with_pred), "systems with pred") | |
# clusters_with_data += 1 | |
# continue | |
# print("There are", clusters_with_data, "clusters with data out of", len(cluster_ids)) | |
for cluster_ind, cluster_id in enumerate(sorted(cluster_ids.index)): | |
if (start_ind is not None and cluster_ind < start_ind) or (end_ind is not None and cluster_ind >= end_ind): | |
continue | |
# if cluster_id != "cluster_10004_p": | |
# continue | |
tmp_dir_path = os.path.join(OUTPUT_FOLDER, "tmp_" + cluster_id) | |
os.makedirs(tmp_dir_path, exist_ok=True) | |
system_id_to_method = {} | |
cluster_systems = systems[systems["cluster_id"] == cluster_id] | |
print("--- Starting cluster", cluster_ind, cluster_id, "size", cluster_systems.shape) | |
with_apo = cluster_systems[cluster_systems.apo_R & cluster_systems.apo_L] | |
print("*** APO *** Cluster", cluster_id, "has", len(with_apo), "systems with apo") | |
for try_counter, row in enumerate(with_apo.itertuples()): | |
if row.split not in ("test", "val") \ | |
and (try_counter >= MAX_TRIES_OF_METHOD or len(system_id_to_method) >= MAX_SYSTEMS_FOR_CLUSTER): | |
continue | |
print("-- Trying to prepare apo", row.id, row.split) | |
try: | |
tmp_gt_r_pdb, tmp_gt_l_pdb = prepare_holo(row, tmp_dir_path, MAX_LENGTH) | |
gt_r_output_path = os.path.join(output_models_folder, f"{row.id}_gt_r.pdb") | |
gt_l_output_path = os.path.join(output_models_folder, f"{row.id}_gt_l.pdb") | |
input_r_output_path = os.path.join(output_models_folder, f"{row.id}_input_r.pdb") | |
input_l_output_path = os.path.join(output_models_folder, f"{row.id}_input_l.pdb") | |
input_r_pdb_path = download_pdb(row.apo_R_pdb, tmp_dir_path) | |
input_l_pdb_path = download_pdb(row.apo_L_pdb, tmp_dir_path) | |
if generate_input_pdbs(input_r_pdb_path, input_l_pdb_path, tmp_gt_r_pdb, tmp_gt_l_pdb, | |
input_r_output_path, input_l_output_path, gt_r_output_path, gt_l_output_path): | |
system_id_to_method[row.id] = "apo" | |
except Exception as e: | |
print("Failed to prepare apo", row.id, e) | |
continue | |
with_pred = cluster_systems[cluster_systems.predicted_R & cluster_systems.predicted_L] | |
print("*** Pred *** Cluster", cluster_id, "has", len(with_pred), "systems with pred") | |
for try_counter, row in enumerate(with_pred.itertuples()): | |
if row.id in system_id_to_method: | |
continue | |
if row.split not in ("test", "val") \ | |
and (try_counter >= MAX_TRIES_OF_METHOD or len(system_id_to_method) >= MAX_SYSTEMS_FOR_CLUSTER): | |
continue | |
print("-- Trying to prepare pred", row.id, row.split) | |
try: | |
tmp_gt_r_pdb, tmp_gt_l_pdb = prepare_holo(row, tmp_dir_path, MAX_LENGTH) | |
gt_r_output_path = os.path.join(output_models_folder, f"{row.id}_gt_r.pdb") | |
gt_l_output_path = os.path.join(output_models_folder, f"{row.id}_gt_l.pdb") | |
input_r_output_path = os.path.join(output_models_folder, f"{row.id}_input_r.pdb") | |
input_l_output_path = os.path.join(output_models_folder, f"{row.id}_input_l.pdb") | |
input_r_pdb_path = download_pdb(row.predicted_R_pdb, tmp_dir_path) | |
input_l_pdb_path = download_pdb(row.predicted_L_pdb, tmp_dir_path) | |
if generate_input_pdbs(input_r_pdb_path, input_l_pdb_path, tmp_gt_r_pdb, tmp_gt_l_pdb, | |
input_r_output_path, input_l_output_path, gt_r_output_path, gt_l_output_path): | |
system_id_to_method[row.id] = "pred" | |
except Exception as e: | |
print("Failed to prepare pred", row.id, e) | |
# default - use gt | |
print("*** GT *** ") | |
for row in cluster_systems.itertuples(): | |
if row.id in system_id_to_method: | |
continue | |
if row.split not in ("test", "val") and len(system_id_to_method) >= MAX_SYSTEMS_FOR_CLUSTER: | |
continue | |
try: | |
tmp_gt_r_pdb, tmp_gt_l_pdb = prepare_holo(row, tmp_dir_path, MAX_LENGTH) | |
gt_r_output_path = os.path.join(output_models_folder, f"{row.id}_gt_r.pdb") | |
gt_l_output_path = os.path.join(output_models_folder, f"{row.id}_gt_l.pdb") | |
input_r_output_path = os.path.join(output_models_folder, f"{row.id}_input_r.pdb") | |
input_l_output_path = os.path.join(output_models_folder, f"{row.id}_input_l.pdb") | |
shutil.copyfile(tmp_gt_r_pdb, gt_r_output_path) | |
shutil.copyfile(tmp_gt_r_pdb, input_r_output_path) | |
shutil.copyfile(tmp_gt_l_pdb, gt_l_output_path) | |
shutil.copyfile(tmp_gt_l_pdb, input_l_output_path) | |
system_id_to_method[row.id] = "gt" | |
except Exception as e: | |
print("Failed to prepare gt", row.id, e) | |
# save jsons | |
for row in cluster_systems.itertuples(): | |
if row.id not in system_id_to_method: | |
continue | |
output_json_path = os.path.join(split_to_folder[row.split], f"{row.id}.json") | |
gt_r_output_path = os.path.join(output_models_folder, f"{row.id}_gt_r.pdb") | |
gt_l_output_path = os.path.join(output_models_folder, f"{row.id}_gt_l.pdb") | |
input_r_output_path = os.path.join(output_models_folder, f"{row.id}_input_r.pdb") | |
input_l_output_path = os.path.join(output_models_folder, f"{row.id}_input_l.pdb") | |
protein_r_seq_len = validate_matching_input_gt(gt_r_output_path, input_r_output_path) | |
protein_l_seq_len = validate_matching_input_gt(gt_l_output_path, input_l_output_path) | |
json_data = { | |
"input_r_structure": _get_rel_path(input_r_output_path), | |
"input_l_structure": _get_rel_path(input_l_output_path), | |
"gt_r_structure": _get_rel_path(gt_r_output_path), | |
"gt_l_structure": _get_rel_path(gt_l_output_path), | |
"resolution": 1.0, | |
"protein_r_seq_len": protein_r_seq_len, | |
"protein_l_seq_len": protein_l_seq_len, | |
"uniprot_r": row.uniprot_R, | |
"uniprot_l": row.uniprot_L, | |
"cluster": row.cluster_id, | |
"input_protein_source": system_id_to_method[row.id], | |
"pdb_id": row.id, | |
} | |
open(output_json_path, "w").write(json.dumps(json_data, indent=4)) | |
print("******* saved", row.id, system_id_to_method[row.id], flush=True) | |
shutil.rmtree(tmp_dir_path) | |
print("total systems", len(systems)) | |
if __name__ == '__main__': | |
if len(sys.argv) == 3: | |
main(int(sys.argv[1]), int(sys.argv[2])) | |
else: | |
main() |