# Copyright 2021 AlQuraishi Laboratory # Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial import math import torch import torch.nn as nn import torch.utils.checkpoint from typing import Optional, List, Tuple from dockformerpp.model.primitives import ( Linear, LayerNorm, Attention, ) from dockformerpp.utils.tensor_utils import permute_final_dims class SingleAttention(nn.Module): def __init__( self, c_in, c_hidden, no_heads, pair_bias=False, c_z=None, inf=1e9, ): """ Args: c_in: Input channel dimension c_hidden: Per-head hidden channel dimension no_heads: Number of attention heads pair_bias: Whether to use pair embedding bias c_z: Pair embedding channel dimension. Ignored unless pair_bias is true inf: A large number to be used in computing the attention mask """ super(SingleAttention, self).__init__() self.c_in = c_in self.c_hidden = c_hidden self.no_heads = no_heads self.pair_bias = pair_bias self.c_z = c_z self.inf = inf self.layer_norm_m = LayerNorm(self.c_in) self.layer_norm_z = None self.linear_z = None if self.pair_bias: self.layer_norm_z = LayerNorm(self.c_z) self.linear_z = Linear( self.c_z, self.no_heads, bias=False, init="normal" ) self.mha = Attention( self.c_in, self.c_in, self.c_in, self.c_hidden, self.no_heads, ) def _prep_inputs(self, m: torch.Tensor, z: Optional[torch.Tensor], mask: Optional[torch.Tensor], inplace_safe: bool = False, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: if mask is None: # [*, N_res] mask = m.new_ones(m.shape[:-1]) # [*, 1, 1, N_res] mask_bias = (self.inf * (mask - 1))[..., :, None, None, :] if (self.pair_bias and z is not None and # For the self.layer_norm_z is not None and # benefit of self.linear_z is not None # TorchScript ): chunks = [] for i in range(0, z.shape[-3], 256): z_chunk = z[..., i: i + 256, :, :] # [*, N_res, N_res, C_z] z_chunk = self.layer_norm_z(z_chunk) # [*, N_res, N_res, no_heads] z_chunk = self.linear_z(z_chunk) chunks.append(z_chunk) z = torch.cat(chunks, dim=-3) # [*, no_heads, N_res, N_res] z = permute_final_dims(z, (2, 0, 1)) return m, mask_bias, z def forward(self, m: torch.Tensor, z: Optional[torch.Tensor] = None, mask: Optional[torch.Tensor] = None, use_memory_efficient_kernel: bool = False, use_lma: bool = False, inplace_safe: bool = False, ) -> torch.Tensor: """ Args: m: [*, N_res, C_m] single embedding z: [*, N_res, N_res, C_z] pair embedding. Required only if pair_bias is True mask: [*, N_res] single mask """ m, mask_bias, z = self._prep_inputs( m, z, mask, inplace_safe=inplace_safe ) biases = [mask_bias] if(z is not None): biases.append(z) m = self.layer_norm_m(m) m = self.mha( q_x=m, kv_x=m, biases=biases, use_memory_efficient_kernel=use_memory_efficient_kernel, use_lma=use_lma, ) return m class SingleRowAttentionWithPairBias(SingleAttention): """ Implements Algorithm 7. """ def __init__(self, c_m, c_z, c_hidden, no_heads, inf=1e9): """ Args: c_m: Input channel dimension c_z: Pair embedding channel dimension c_hidden: Per-head hidden channel dimension no_heads: Number of attention heads inf: Large number used to construct attention masks """ super(SingleRowAttentionWithPairBias, self).__init__( c_m, c_hidden, no_heads, pair_bias=True, c_z=c_z, inf=inf, )