Spaces:
Sleeping
Sleeping
Update inference_app.py
Browse files- inference_app.py +1 -2
inference_app.py
CHANGED
@@ -71,7 +71,7 @@ def optimize_coordinate(points, bound_buffer=15, dmin=6.05):
|
|
71 |
)
|
72 |
|
73 |
# Define the constraint function (ensure dmin distance)
|
74 |
-
con = NonlinearConstraint(lambda x: np.min(np.linalg.norm(points - x, axis=1)), dmin,
|
75 |
|
76 |
# Define the objective function (minimize pairwise distance)
|
77 |
def objective(x):
|
@@ -103,7 +103,6 @@ def predict(input_sequence, input_ligand, input_msa, input_protein):
|
|
103 |
# return an output pdb file with the protein and ligand with resname LIG or UNK.
|
104 |
# also return any metrics you want to log, metrics will not be used for evaluation but might be useful for users
|
105 |
metrics = {"min_dist": min_dist}
|
106 |
-
metrics = {}
|
107 |
|
108 |
end_time = time.time()
|
109 |
run_time = end_time - start_time
|
|
|
71 |
)
|
72 |
|
73 |
# Define the constraint function (ensure dmin distance)
|
74 |
+
con = NonlinearConstraint(lambda x: np.min(np.linalg.norm(points - x, axis=1)), dmin, 8)
|
75 |
|
76 |
# Define the objective function (minimize pairwise distance)
|
77 |
def objective(x):
|
|
|
103 |
# return an output pdb file with the protein and ligand with resname LIG or UNK.
|
104 |
# also return any metrics you want to log, metrics will not be used for evaluation but might be useful for users
|
105 |
metrics = {"min_dist": min_dist}
|
|
|
106 |
|
107 |
end_time = time.time()
|
108 |
run_time = end_time - start_time
|