Spaces:
Sleeping
Sleeping
Update inference_app.py
Browse files- inference_app.py +71 -5
inference_app.py
CHANGED
@@ -5,15 +5,80 @@ import gradio as gr
|
|
5 |
|
6 |
from gradio_molecule3d import Molecule3D
|
7 |
|
|
|
|
|
|
|
|
|
8 |
|
9 |
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
start_time = time.time()
|
|
|
13 |
# Do inference here
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
# return an output pdb file with the protein and ligand with resname LIG or UNK.
|
15 |
# also return any metrics you want to log, metrics will not be used for evaluation but might be useful for users
|
16 |
-
metrics = {"mean_plddt": 80, "binding_affinity": -2}
|
|
|
|
|
17 |
end_time = time.time()
|
18 |
run_time = end_time - start_time
|
19 |
return ["test_out.pdb", "test_docking_pose.sdf"], metrics, run_time
|
@@ -43,12 +108,13 @@ with gr.Blocks() as app:
|
|
43 |
gr.Examples(
|
44 |
[
|
45 |
[
|
46 |
-
|
47 |
"COc1ccc(cc1)n2c3c(c(n2)C(=O)N)CCN(C3=O)c4ccc(cc4)N5CCCCC5=O",
|
|
|
48 |
"test_out.pdb"
|
49 |
],
|
50 |
],
|
51 |
-
[input_sequence, input_ligand, input_protein],
|
52 |
)
|
53 |
reps = [
|
54 |
{
|
@@ -68,6 +134,6 @@ with gr.Blocks() as app:
|
|
68 |
metrics = gr.JSON(label="Metrics")
|
69 |
run_time = gr.Textbox(label="Runtime")
|
70 |
|
71 |
-
btn.click(predict, inputs=[input_sequence, input_ligand,
|
72 |
|
73 |
app.launch()
|
|
|
5 |
|
6 |
from gradio_molecule3d import Molecule3D
|
7 |
|
8 |
+
import numpy as np
|
9 |
+
from biotite.structure.io.pdb import PDBFile
|
10 |
+
from rdkit import Chem
|
11 |
+
from rdkit.Chem import AllChem
|
12 |
|
13 |
|
14 |
+
def generate_input_conformer(
|
15 |
+
ligand_smiles: str,
|
16 |
+
addHs: bool = False,
|
17 |
+
minimize_maxIters: int = -1,
|
18 |
+
) -> Chem.Mol:
|
19 |
|
20 |
+
_mol = Chem.MolFromSmiles(ligand_smiles)
|
21 |
+
# need to add Hs to generate sensible conformers
|
22 |
+
_mol = Chem.AddHs(_mol)
|
23 |
+
|
24 |
+
# try embedding molecule using ETKDGv2 (default)
|
25 |
+
confid = AllChem.EmbedMolecule(
|
26 |
+
_mol,
|
27 |
+
useRandomCoords=True,
|
28 |
+
useBasicKnowledge=True,
|
29 |
+
maxAttempts=100,
|
30 |
+
randomSeed=42,
|
31 |
+
)
|
32 |
+
if confid != -1:
|
33 |
+
if minimize_maxIters > 0:
|
34 |
+
# molecule successfully embedded - minimize
|
35 |
+
success = AllChem.MMFFOptimizeMolecule(_mol, maxIters=minimize_maxIters)
|
36 |
+
# 0 if the optimization converged,
|
37 |
+
# -1 if the forcefield could not be set up,
|
38 |
+
# 1 if more iterations are required.
|
39 |
+
if success == 1:
|
40 |
+
# extend optimization to double the steps (extends by the same amount)
|
41 |
+
AllChem.MMFFOptimizeMolecule(_mol, maxIters=minimize_maxIters)
|
42 |
+
else:
|
43 |
+
# this means EmbedMolecule failed
|
44 |
+
# try less optimal approach
|
45 |
+
confid = AllChem.EmbedMolecule(
|
46 |
+
_mol,
|
47 |
+
useRandomCoords=True,
|
48 |
+
useBasicKnowledge=False,
|
49 |
+
maxAttempts=100,
|
50 |
+
randomSeed=42,
|
51 |
+
)
|
52 |
+
return _mol
|
53 |
+
|
54 |
+
|
55 |
+
def set_protein_to_new_coord(input_pdb_file, new_coord, output_file):
|
56 |
+
structure = PDBFile.read(input_pdb_file).get_structure()
|
57 |
+
structure.coord = np.array([new_coord] * len(structure.coord))
|
58 |
+
file = PDBFile()
|
59 |
+
file.set_structure(structure)
|
60 |
+
file.write(output_file)
|
61 |
+
|
62 |
+
|
63 |
+
def predict (input_sequence, input_ligand, input_msa, input_protein):
|
64 |
start_time = time.time()
|
65 |
+
|
66 |
# Do inference here
|
67 |
+
mol = generate_input_conformer(input_ligand, minimize_maxIters=100)
|
68 |
+
with Chem.SDWriter("test_docking_pose.sdf") as writer:
|
69 |
+
writer.write(mol)
|
70 |
+
mol_coords = mol.GetConformer().GetPositions()
|
71 |
+
|
72 |
+
# new_coord = [0, 0, 0]
|
73 |
+
new_coord = np.mean(mol_coords, axis=1)
|
74 |
+
output_file = "test_out.pdb"
|
75 |
+
set_protein_to_new_coord(input_protein, new_coord, output_file)
|
76 |
+
|
77 |
# return an output pdb file with the protein and ligand with resname LIG or UNK.
|
78 |
# also return any metrics you want to log, metrics will not be used for evaluation but might be useful for users
|
79 |
+
# metrics = {"mean_plddt": 80, "binding_affinity": -2}
|
80 |
+
metrics = {}
|
81 |
+
|
82 |
end_time = time.time()
|
83 |
run_time = end_time - start_time
|
84 |
return ["test_out.pdb", "test_docking_pose.sdf"], metrics, run_time
|
|
|
108 |
gr.Examples(
|
109 |
[
|
110 |
[
|
111 |
+
None,
|
112 |
"COc1ccc(cc1)n2c3c(c(n2)C(=O)N)CCN(C3=O)c4ccc(cc4)N5CCCCC5=O",
|
113 |
+
None,
|
114 |
"test_out.pdb"
|
115 |
],
|
116 |
],
|
117 |
+
[input_sequence, input_ligand, input_msa, input_protein],
|
118 |
)
|
119 |
reps = [
|
120 |
{
|
|
|
134 |
metrics = gr.JSON(label="Metrics")
|
135 |
run_time = gr.Textbox(label="Runtime")
|
136 |
|
137 |
+
btn.click(predict, inputs=[input_sequence, input_ligand, input_protein], outputs=[out,metrics, run_time])
|
138 |
|
139 |
app.launch()
|