Update inference_app.py
Browse files- inference_app.py +69 -3
inference_app.py
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
from __future__ import annotations
|
2 |
from pathlib import Path
|
3 |
import time
|
4 |
-
from biotite.application.autodock import VinaApp
|
5 |
|
6 |
import gradio as gr
|
7 |
|
@@ -24,6 +23,31 @@ EVAL_METRICS = ["system", "LDDT-PLI", "LDDT-LP", "BISY-RMSD"]
|
|
24 |
EVAL_METRICS_PINDER = ["system","L_rms", "I_rms", "F_nat", "DOCKQ", "CAPRI_class"]
|
25 |
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
|
29 |
|
@@ -85,13 +109,55 @@ def get_metrics(
|
|
85 |
return gr.DataFrame(metrics, visible=True), run_time
|
86 |
|
87 |
|
|
|
88 |
def get_metrics_pinder(
|
89 |
system_id: str,
|
90 |
complex_file: Path,
|
91 |
methodname: str = "",
|
92 |
store:bool =True
|
93 |
) -> tuple[pd.DataFrame, float]:
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
with gr.Blocks() as app:
|
97 |
with gr.Tab("🧬 PINDER evaluation template"):
|
@@ -127,7 +193,7 @@ with gr.Blocks() as app:
|
|
127 |
posebusters = gr.Checkbox(label="PoseBusters", value=True)
|
128 |
methodname = gr.Textbox(label="Name of your method in the format mlsb/spacename")
|
129 |
store = gr.Checkbox(label="Store on huggingface for leaderboard", value=False)
|
130 |
-
|
131 |
[
|
132 |
[
|
133 |
"4neh__1__1.B__1.H",
|
|
|
1 |
from __future__ import annotations
|
2 |
from pathlib import Path
|
3 |
import time
|
|
|
4 |
|
5 |
import gradio as gr
|
6 |
|
|
|
23 |
EVAL_METRICS_PINDER = ["system","L_rms", "I_rms", "F_nat", "DOCKQ", "CAPRI_class"]
|
24 |
|
25 |
|
26 |
+
import os
|
27 |
+
|
28 |
+
from huggingface_hub import HfApi
|
29 |
+
|
30 |
+
# Info to change for your repository
|
31 |
+
# ----------------------------------
|
32 |
+
TOKEN = os.environ.get("HF_TOKEN") # A read/write token for your org
|
33 |
+
|
34 |
+
OWNER = "MLSB" # Change to your org - don't forget to create a results and request dataset, with the correct format!
|
35 |
+
# ----------------------------------
|
36 |
+
|
37 |
+
REPO_ID = f"{OWNER}/leaderboard2024"
|
38 |
+
QUEUE_REPO = f"{OWNER}/requests"
|
39 |
+
RESULTS_REPO = f"{OWNER}/results"
|
40 |
+
|
41 |
+
# If you setup a cache later, just change HF_HOME
|
42 |
+
CACHE_PATH=os.getenv("HF_HOME", ".")
|
43 |
+
|
44 |
+
# Local caches
|
45 |
+
EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
|
46 |
+
EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
|
47 |
+
EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-queue-bk")
|
48 |
+
EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk")
|
49 |
+
|
50 |
+
API = HfApi(token=TOKEN)
|
51 |
|
52 |
|
53 |
|
|
|
109 |
return gr.DataFrame(metrics, visible=True), run_time
|
110 |
|
111 |
|
112 |
+
|
113 |
def get_metrics_pinder(
|
114 |
system_id: str,
|
115 |
complex_file: Path,
|
116 |
methodname: str = "",
|
117 |
store:bool =True
|
118 |
) -> tuple[pd.DataFrame, float]:
|
119 |
+
start_time = time.time()
|
120 |
+
|
121 |
+
if not isinstance(prediction, Path):
|
122 |
+
prediction = Path(prediction)
|
123 |
+
# Infer the ground-truth name from prediction filename or directory where its stored
|
124 |
+
# We need to figure out how we plan to consistently map predictions to systems so that eval metrics can be calculated
|
125 |
+
# I assume we won't distribute the ground-truth structures (though they are already accessible if we don't blind system IDs)
|
126 |
+
native = Path(f"./ground_truth/{system_id}.pdb")
|
127 |
+
# alternatively
|
128 |
+
# native = Path(f"./ground_truth/{prediction.parent.parent.stem}.pdb")
|
129 |
+
# OR we need the user to provide prediction + system name
|
130 |
+
try:
|
131 |
+
# Get eval metrics for the prediction
|
132 |
+
bdq = BiotiteDockQ(native, complex_file.name, parallel_io=False)
|
133 |
+
metrics = bdq.calculate()
|
134 |
+
metrics = metrics[["system", "LRMS", "iRMS", "Fnat", "DockQ", "CAPRI"]].copy()
|
135 |
+
metrics.rename(columns={"LRMS": "L_rms", "iRMS": "I_rms", "Fnat": "F_nat", "DockQ": "DOCKQ", "CAPRI": "CAPRI_class"}, inplace=True)
|
136 |
+
except Exception as e:
|
137 |
+
failed_metrics = {"L_rms": 100.0, "I_rms": 100.0, "F_nat": 0.0, "DOCKQ": 0.0, "CAPRI_class": "Incorrect"}
|
138 |
+
metrics = pd.DataFrame([failed_metrics])
|
139 |
+
metrics["system"] = native.stem
|
140 |
+
gr.Error(f"Failed to evaluate prediction [{prediction}]:\n{e}")
|
141 |
+
# Upload to hub
|
142 |
+
with tempfile.NamedTemporaryFile as temp:
|
143 |
+
metrics.to_csv(temp.name)
|
144 |
+
API.upload_file(
|
145 |
+
path_or_fileobj=temp.name,
|
146 |
+
path_in_repo=f"{dataset}/{methodname}/{system_id}/",
|
147 |
+
repo_id=QUEUE_REPO,
|
148 |
+
repo_type="dataset",
|
149 |
+
commit_message=f"Add {model_name} to eval queue",
|
150 |
+
)
|
151 |
+
API.upload_file(
|
152 |
+
path_or_fileobj=complex_file.name,
|
153 |
+
path_in_repo=f"{dataset}/{methodname}/{system_id}/",
|
154 |
+
repo_id=QUEUE_REPO,
|
155 |
+
repo_type="dataset",
|
156 |
+
commit_message=f"Add {model_name} to eval queue",
|
157 |
+
)
|
158 |
+
end_time = time.time()
|
159 |
+
run_time = end_time - start_time
|
160 |
+
return gr.DataFrame(metrics, visible=True), run_time
|
161 |
|
162 |
with gr.Blocks() as app:
|
163 |
with gr.Tab("🧬 PINDER evaluation template"):
|
|
|
193 |
posebusters = gr.Checkbox(label="PoseBusters", value=True)
|
194 |
methodname = gr.Textbox(label="Name of your method in the format mlsb/spacename")
|
195 |
store = gr.Checkbox(label="Store on huggingface for leaderboard", value=False)
|
196 |
+
gr.Examples(
|
197 |
[
|
198 |
[
|
199 |
"4neh__1__1.B__1.H",
|