Create inference_app.py
Browse files- inference_app.py +220 -0
inference_app.py
ADDED
@@ -0,0 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
from pathlib import Path
|
3 |
+
import time
|
4 |
+
from biotite.application.autodock import VinaApp
|
5 |
+
|
6 |
+
import gradio as gr
|
7 |
+
|
8 |
+
from gradio_molecule3d import Molecule3D
|
9 |
+
from gradio_molecule2d import molecule2d
|
10 |
+
import numpy as np
|
11 |
+
from rdkit import Chem
|
12 |
+
from rdkit.Chem import AllChem
|
13 |
+
import pandas as pd
|
14 |
+
from biotite.structure import centroid, from_template
|
15 |
+
from biotite.structure.io import load_structure
|
16 |
+
from biotite.structure.io.mol import MOLFile, SDFile
|
17 |
+
from biotite.structure.io.pdb import PDBFile
|
18 |
+
|
19 |
+
from plinder.eval.docking.write_scores import evaluate
|
20 |
+
|
21 |
+
|
22 |
+
EVAL_METRICS = ["system", "LDDT-PLI", "LDDT-LP", "BISY-RMSD"]
|
23 |
+
|
24 |
+
|
25 |
+
def vina(
|
26 |
+
ligand, receptor, pocket_center, output_folder: Path, size=10, max_num_poses=5
|
27 |
+
):
|
28 |
+
app = VinaApp(
|
29 |
+
ligand,
|
30 |
+
receptor,
|
31 |
+
center=pocket_center,
|
32 |
+
size=[size, size, size],
|
33 |
+
)
|
34 |
+
app.set_max_number_of_models(max_num_poses)
|
35 |
+
app.start()
|
36 |
+
app.join()
|
37 |
+
docked_ligand = from_template(ligand, app.get_ligand_coord())
|
38 |
+
docked_ligand = docked_ligand[..., ~np.isnan(docked_ligand.coord[0]).any(axis=-1)]
|
39 |
+
output_files = []
|
40 |
+
for i in range(max_num_poses):
|
41 |
+
sdf_file = MOLFile()
|
42 |
+
sdf_file.set_structure(docked_ligand[i])
|
43 |
+
output_file = output_folder / f"docked_ligand_{i}.sdf"
|
44 |
+
sdf_file.write(output_file)
|
45 |
+
output_files.append(output_file)
|
46 |
+
return output_files
|
47 |
+
|
48 |
+
|
49 |
+
def predict(
|
50 |
+
input_sequence: str,
|
51 |
+
input_ligand: str,
|
52 |
+
input_msa: gr.File | None = None,
|
53 |
+
input_protein: gr.File | None = None,
|
54 |
+
max_num_poses: int = 1,
|
55 |
+
):
|
56 |
+
"""
|
57 |
+
Main prediction function that calls ligsite and smina
|
58 |
+
Parameters
|
59 |
+
----------
|
60 |
+
input_sequence: str
|
61 |
+
monomer sequence
|
62 |
+
input_ligand: str
|
63 |
+
ligand as SMILES string
|
64 |
+
input_msa: gradio.File | None
|
65 |
+
Gradio file object to MSA a3m file
|
66 |
+
input_protein: gradio.File | None
|
67 |
+
Gradio file object to monomer protein structure as CIF file
|
68 |
+
max_num_poses: int
|
69 |
+
Number of poses to generate
|
70 |
+
Returns
|
71 |
+
-------
|
72 |
+
output_structures: tuple
|
73 |
+
(output_protein, output_ligand_sdf)
|
74 |
+
run_time: float
|
75 |
+
run time of the program
|
76 |
+
"""
|
77 |
+
start_time = time.time()
|
78 |
+
|
79 |
+
if input_protein is None:
|
80 |
+
raise gr.Error("need input_protein")
|
81 |
+
print(input_protein)
|
82 |
+
ligand_file = Path(input_protein).parent / "ligand.sdf"
|
83 |
+
print(ligand_file)
|
84 |
+
conformer = Chem.AddHs(Chem.MolFromSmiles(input_ligand))
|
85 |
+
AllChem.EmbedMolecule(conformer)
|
86 |
+
AllChem.MMFFOptimizeMolecule(conformer)
|
87 |
+
Chem.SDWriter(ligand_file).write(conformer)
|
88 |
+
ligand = SDFile.read(ligand_file).record.get_structure()
|
89 |
+
receptor = load_structure(input_protein, include_bonds=True)
|
90 |
+
docking_poses = vina(
|
91 |
+
ligand,
|
92 |
+
receptor,
|
93 |
+
centroid(receptor),
|
94 |
+
Path(input_protein).parent,
|
95 |
+
max_num_poses=max_num_poses,
|
96 |
+
)
|
97 |
+
end_time = time.time()
|
98 |
+
run_time = end_time - start_time
|
99 |
+
pdb_file = PDBFile()
|
100 |
+
pdb_file.set_structure(receptor)
|
101 |
+
output_pdb = Path(input_protein).parent / "receptor.pdb"
|
102 |
+
pdb_file.write(output_pdb)
|
103 |
+
return [str(output_pdb), str(docking_poses[0])], run_time
|
104 |
+
|
105 |
+
|
106 |
+
def get_metrics(
|
107 |
+
system_id: str,
|
108 |
+
receptor_file: Path,
|
109 |
+
ligand_file: Path,
|
110 |
+
flexible: bool = True,
|
111 |
+
posebusters: bool = True,
|
112 |
+
) -> tuple[pd.DataFrame, float]:
|
113 |
+
start_time = time.time()
|
114 |
+
metrics = pd.DataFrame(
|
115 |
+
[
|
116 |
+
evaluate(
|
117 |
+
model_system_id=system_id,
|
118 |
+
reference_system_id=system_id,
|
119 |
+
receptor_file=receptor_file,
|
120 |
+
ligand_file_list=[Path(ligand_file)],
|
121 |
+
flexible=flexible,
|
122 |
+
posebusters=posebusters,
|
123 |
+
posebusters_full=False,
|
124 |
+
).get("LIG_0", {})
|
125 |
+
]
|
126 |
+
)
|
127 |
+
if posebusters:
|
128 |
+
metrics["posebusters"] = metrics[
|
129 |
+
[col for col in metrics.columns if col.startswith("posebusters_")]
|
130 |
+
].sum(axis=1)
|
131 |
+
metrics["posebusters_valid"] = metrics[
|
132 |
+
[col for col in metrics.columns if col.startswith("posebusters_")]
|
133 |
+
].sum(axis=1) == 20
|
134 |
+
columns = ["reference", "lddt_pli_ave", "lddt_lp_ave", "bisy_rmsd_ave"]
|
135 |
+
if flexible:
|
136 |
+
columns.extend(["lddt", "bb_lddt"])
|
137 |
+
if posebusters:
|
138 |
+
columns.extend([col for col in metrics.columns if col.startswith("posebusters")])
|
139 |
+
|
140 |
+
metrics = metrics[columns].copy()
|
141 |
+
mapping = {
|
142 |
+
"lddt_pli_ave": "LDDT-PLI",
|
143 |
+
"lddt_lp_ave": "LDDT-LP",
|
144 |
+
"bisy_rmsd_ave": "BISY-RMSD",
|
145 |
+
"reference": "system",
|
146 |
+
}
|
147 |
+
if flexible:
|
148 |
+
mapping["lddt"] = "LDDT"
|
149 |
+
mapping["bb_lddt"] = "Backbone LDDT"
|
150 |
+
if posebusters:
|
151 |
+
mapping["posebusters"] = "PoseBusters #checks"
|
152 |
+
mapping["posebusters_valid"] = "PoseBusters valid"
|
153 |
+
metrics.rename(
|
154 |
+
columns=mapping,
|
155 |
+
inplace=True,
|
156 |
+
)
|
157 |
+
end_time = time.time()
|
158 |
+
run_time = end_time - start_time
|
159 |
+
return metrics, run_time
|
160 |
+
|
161 |
+
|
162 |
+
with gr.Blocks() as app:
|
163 |
+
with gr.Tab("🧬 PINDER evaluation template"):
|
164 |
+
with gr.Row():
|
165 |
+
with gr.Column():
|
166 |
+
input_system_id_pinder = gr.Textbox(label="PINDER system ID")
|
167 |
+
input_receptor_file_pinder = gr.File(label="Receptor file")
|
168 |
+
input_ligand_file_pinder = gr.File(label="Ligand file")
|
169 |
+
methodname_pinder = gr.Textbox(label="Name of your method in the format mlsb/spacename")
|
170 |
+
store_pinder = gr.Checkbox(label="Store on huggingface for leaderboard", value=False)
|
171 |
+
eval_btn_pinder = gr.Button("Run Evaluation")
|
172 |
+
|
173 |
+
|
174 |
+
|
175 |
+
|
176 |
+
with gr.Tab("⚖️ PLINDER evaluation template"):
|
177 |
+
with gr.Row():
|
178 |
+
with gr.Column():
|
179 |
+
input_system_id = gr.Textbox(label="PLINDER system ID")
|
180 |
+
input_receptor_file = gr.File(label="Receptor file (CIF)")
|
181 |
+
input_ligand_file = gr.File(label="Ligand file (SDF)")
|
182 |
+
flexible = gr.Checkbox(label="Flexible docking", value=True)
|
183 |
+
posebusters = gr.Checkbox(label="PoseBusters", value=True)
|
184 |
+
methodname = gr.Textbox(label="Name of your method in the format mlsb/spacename")
|
185 |
+
store = gr.Checkbox(label="Store on huggingface for leaderboard", value=False)
|
186 |
+
|
187 |
+
eval_btn = gr.Button("Run Evaluation")
|
188 |
+
gr.Examples(
|
189 |
+
[
|
190 |
+
[
|
191 |
+
"4neh__1__1.B__1.H",
|
192 |
+
"input_protein_test.cif",
|
193 |
+
"input_ligand_test.sdf",
|
194 |
+
True,
|
195 |
+
True,
|
196 |
+
],
|
197 |
+
],
|
198 |
+
[input_system_id, input_receptor_file, input_ligand_file, flexible, posebusters, methodname, store],
|
199 |
+
)
|
200 |
+
eval_run_time = gr.Textbox(label="Evaluation runtime")
|
201 |
+
metric_table = gr.DataFrame(
|
202 |
+
pd.DataFrame([], columns=EVAL_METRICS), label="Evaluation metrics"
|
203 |
+
)
|
204 |
+
|
205 |
+
metric_table_pinder = gr.DataFrame(
|
206 |
+
pd.DataFrame([], columns=EVAL_METRICS_PINDER), label="Evaluation metrics"
|
207 |
+
)
|
208 |
+
|
209 |
+
eval_btn.click(
|
210 |
+
get_metrics,
|
211 |
+
inputs=[input_system_id, input_receptor_file, input_ligand_file, flexible, posebusters],
|
212 |
+
outputs=[metric_table, eval_run_time],
|
213 |
+
)
|
214 |
+
eval_btn_pinder.click(
|
215 |
+
get_metrics_pinder,
|
216 |
+
inputs=[input_system_id_pinder, input_receptor_file_pinder, input_ligand_file_pinder, methodname_pinder, store_pinder],
|
217 |
+
outputs=[metric_table_pinder, eval_run_time],
|
218 |
+
)
|
219 |
+
|
220 |
+
app.launch()
|