File size: 23,845 Bytes
82f0f49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
from __future__ import annotations
import time
import json 
import gradio as gr
from gradio_molecule3d import Molecule3D
import torch
from pinder.core import get_pinder_location
get_pinder_location()
from pytorch_lightning import LightningModule

import torch
import lightning.pytorch as pl
import torch.nn.functional as F

import torch.nn as nn
import torchmetrics
import torch.nn as nn
import torch.nn.functional as F
from torch_geometric.nn import MessagePassing
from torch_geometric.nn import global_mean_pool
from torch.nn import Sequential, Linear, BatchNorm1d, ReLU
from torch_scatter import scatter
from torch.nn import Module


import pinder.core as pinder
pinder.__version__
from torch_geometric.loader import DataLoader
from pinder.core.loader.dataset import get_geo_loader
from pinder.core import download_dataset
from pinder.core import get_index
from pinder.core import get_metadata
from pathlib import Path
import pandas as pd
from pinder.core import PinderSystem
import torch
from pinder.core.loader.dataset import PPIDataset
from pinder.core.loader.geodata import NodeRepresentation
import pickle
from pinder.core import get_index, PinderSystem
from torch_geometric.data import HeteroData
import os

from enum import Enum

import numpy as np
import torch
import lightning.pytorch as pl
from numpy.typing import NDArray
from torch_geometric.data import HeteroData

from pinder.core.index.system import PinderSystem
from pinder.core.loader.structure import Structure
from pinder.core.utils import constants as pc
from pinder.core.utils.log import setup_logger
from pinder.core.index.system import _align_monomers_with_mask
from pinder.core.loader.structure import Structure

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_geometric.nn import MessagePassing
from torch_geometric.nn import global_mean_pool
from torch.nn import Sequential, Linear, BatchNorm1d, ReLU
from torch_scatter import scatter
from torch.nn import Module
import time
from torch_geometric.nn import global_max_pool
import copy
import inspect
import warnings
from typing import Optional, Tuple, Union

import torch
from torch import Tensor

from torch_geometric.data import Data, Dataset, HeteroData
from torch_geometric.data.feature_store import FeatureStore
from torch_geometric.data.graph_store import GraphStore
from torch_geometric.loader import (
    LinkLoader,
    LinkNeighborLoader,
    NeighborLoader,
    NodeLoader,
)
from torch_geometric.loader.dataloader import DataLoader
from torch_geometric.loader.utils import get_edge_label_index, get_input_nodes
from torch_geometric.sampler import BaseSampler, NeighborSampler
from torch_geometric.typing import InputEdges, InputNodes

try:
    from lightning.pytorch import LightningDataModule as PLLightningDataModule
    no_pytorch_lightning = False
except (ImportError, ModuleNotFoundError):
    PLLightningDataModule = object
    no_pytorch_lightning = True

from lightning.pytorch.callbacks import ModelCheckpoint
from lightning.pytorch.loggers.tensorboard import TensorBoardLogger
from lightning.pytorch.callbacks.early_stopping import EarlyStopping
from torch_geometric.data.lightning.datamodule import LightningDataset
from pytorch_lightning.loggers.wandb import WandbLogger
def get_system(system_id: str) -> PinderSystem:
    return PinderSystem(system_id)
from Bio import PDB
from Bio.PDB.PDBIO import PDBIO

log = setup_logger(__name__)

try:
    from torch_cluster import knn_graph

    torch_cluster_installed = True
except ImportError as e:
    log.warning(
        "torch-cluster is not installed!"
        "Please install the appropriate library for your pytorch installation."
        "See https://github.com/rusty1s/pytorch_cluster/issues/185 for background."
    )
    torch_cluster_installed = False


def structure2tensor(
    atom_coordinates: NDArray[np.double] | None = None,
    atom_types: NDArray[np.str_] | None = None,
    element_types: NDArray[np.str_] | None = None,
    residue_coordinates: NDArray[np.double] | None = None,
    residue_ids: NDArray[np.int_] | None = None,
    residue_types: NDArray[np.str_] | None = None,
    chain_ids: NDArray[np.str_] | None = None,
    dtype: torch.dtype = torch.float32,
) -> dict[str, torch.Tensor]:
    property_dict = {}
    if atom_types is not None:
        unknown_name_idx = max(pc.ALL_ATOM_POSNS.values()) + 1
        types_array_at = np.zeros((len(atom_types), 1))
        for i, name in enumerate(atom_types):
            types_array_at[i] = pc.ALL_ATOM_POSNS.get(name, unknown_name_idx)
        property_dict["atom_types"] = torch.tensor(types_array_at).type(dtype)
    if element_types is not None:
        types_array_ele = np.zeros((len(element_types), 1))
        for i, name in enumerate(element_types):
            types_array_ele[i] = pc.ELE2NUM.get(name, pc.ELE2NUM["other"])
        property_dict["element_types"] = torch.tensor(types_array_ele).type(dtype)
    if residue_types is not None:
        unknown_name_idx = max(pc.AA_TO_INDEX.values()) + 1
        types_array_res = np.zeros((len(residue_types), 1))
        for i, name in enumerate(residue_types):
            types_array_res[i] = pc.AA_TO_INDEX.get(name, unknown_name_idx)
        property_dict["residue_types"] = torch.tensor(types_array_res).type(dtype)

    if atom_coordinates is not None:
        property_dict["atom_coordinates"] = torch.tensor(atom_coordinates, dtype=dtype)
        
    if residue_coordinates is not None:
        property_dict["residue_coordinates"] = torch.tensor(
            residue_coordinates, dtype=dtype
        )
    if residue_ids is not None:
        property_dict["residue_ids"] = torch.tensor(residue_ids, dtype=dtype)
    if chain_ids is not None:
        property_dict["chain_ids"] = torch.zeros(len(chain_ids), dtype=dtype)
        property_dict["chain_ids"][chain_ids == "L"] = 1
    return property_dict


class NodeRepresentation(Enum):
    Surface = "surface"
    Atom = "atom"
    Residue = "residue"


class PairedPDB(HeteroData):  # type: ignore
    @classmethod
    def from_tuple_system(
        cls,
    
        tupal: tuple = (Structure , Structure , Structure),
        
        add_edges: bool = True,
        k: int = 10,
        
    ) -> PairedPDB:
        return cls.from_structure_pair(
            
            holo=tupal[0],
            apo=tupal[1],
            add_edges=add_edges,
            k=k,
        )

    @classmethod
    def from_structure_pair(
        cls,

        holo: Structure,
        apo: Structure,
        
        add_edges: bool = True,
        k: int = 10,
    ) -> PairedPDB:
        graph = cls()
        holo_calpha = holo.filter("atom_name", mask=["CA"])
        apo_calpha = apo.filter("atom_name", mask=["CA"])
        r_h = (holo.dataframe['chain_id'] == 'R').sum()
        r_a = (apo.dataframe['chain_id'] == 'R').sum()
        
        holo_r_props = structure2tensor(
            atom_coordinates=holo.coords[:r_h],
            atom_types=holo.atom_array.atom_name[:r_h],
            element_types=holo.atom_array.element[:r_h],
            residue_coordinates=holo_calpha.coords[:r_h],
            residue_types=holo_calpha.atom_array.res_name[:r_h],
            residue_ids=holo_calpha.atom_array.res_id[:r_h],
        )
        holo_l_props = structure2tensor(
            atom_coordinates=holo.coords[r_h:],
            
            atom_types=holo.atom_array.atom_name[r_h:],
            element_types=holo.atom_array.element[r_h:],
            residue_coordinates=holo_calpha.coords[r_h:],
            residue_types=holo_calpha.atom_array.res_name[r_h:],
            residue_ids=holo_calpha.atom_array.res_id[r_h:],
        )
        apo_r_props = structure2tensor(
            atom_coordinates=apo.coords[:r_a],
            atom_types=apo.atom_array.atom_name[:r_a],
            element_types=apo.atom_array.element[:r_a],
            residue_coordinates=apo_calpha.coords[:r_a],
            residue_types=apo_calpha.atom_array.res_name[:r_a],
            residue_ids=apo_calpha.atom_array.res_id[:r_a],
        )
        apo_l_props = structure2tensor(
            atom_coordinates=apo.coords[r_a:],
            atom_types=apo.atom_array.atom_name[r_a:],
            element_types=apo.atom_array.element[r_a:],
            residue_coordinates=apo_calpha.coords[r_a:],
            residue_types=apo_calpha.atom_array.res_name[r_a:],
            residue_ids=apo_calpha.atom_array.res_id[r_a:],
        )
       
        
       
        graph["ligand"].x = apo_l_props["atom_types"]
        graph["ligand"].pos = apo_l_props["atom_coordinates"]
        graph["receptor"].x = apo_r_props["atom_types"]
        graph["receptor"].pos = apo_r_props["atom_coordinates"]
        graph["ligand"].y = holo_l_props["atom_coordinates"]
        # graph["ligand"].pos = holo_l_props["atom_coordinates"]
        graph["receptor"].y = holo_r_props["atom_coordinates"]
        # graph["receptor"].pos = holo_r_props["atom_coordinates"]
        if add_edges and torch_cluster_installed:
                graph["ligand"].edge_index = knn_graph(
                    graph["ligand"].pos, k=k
                )
                graph["receptor"].edge_index = knn_graph(
                    graph["receptor"].pos, k=k
                )
                # graph["ligand"].edge_index = knn_graph(
                #     graph["ligand"].pos, k=k
                # )
                # graph["receptor"].edge_index = knn_graph(
                #     graph["receptor"].pos, k=k
                # )

        return graph
    
# To create dataset, we have used only PINDER datyaset with following steps as follows:

# log = setup_logger(__name__)

# try:
#     from torch_cluster import knn_graph

#     torch_cluster_installed = True
# except ImportError as e:
#     log.warning(
#         "torch-cluster is not installed!"
#         "Please install the appropriate library for your pytorch installation."
#         "See https://github.com/rusty1s/pytorch_cluster/issues/185 for background."
#     )
#     torch_cluster_installed = False


# def structure2tensor(
#     atom_coordinates: NDArray[np.double] | None = None,
#     atom_types: NDArray[np.str_] | None = None,
#     element_types: NDArray[np.str_] | None = None,
#     residue_coordinates: NDArray[np.double] | None = None,
#     residue_ids: NDArray[np.int_] | None = None,
#     residue_types: NDArray[np.str_] | None = None,
#     chain_ids: NDArray[np.str_] | None = None,
#     dtype: torch.dtype = torch.float32,
# ) -> dict[str, torch.Tensor]:
#     property_dict = {}
#     if atom_types is not None:
#         unknown_name_idx = max(pc.ALL_ATOM_POSNS.values()) + 1
#         types_array_at = np.zeros((len(atom_types), 1))
#         for i, name in enumerate(atom_types):
#             types_array_at[i] = pc.ALL_ATOM_POSNS.get(name, unknown_name_idx)
#         property_dict["atom_types"] = torch.tensor(types_array_at).type(dtype)
#     if element_types is not None:
#         types_array_ele = np.zeros((len(element_types), 1))
#         for i, name in enumerate(element_types):
#             types_array_ele[i] = pc.ELE2NUM.get(name, pc.ELE2NUM["other"])
#         property_dict["element_types"] = torch.tensor(types_array_ele).type(dtype)
#     if residue_types is not None:
#         unknown_name_idx = max(pc.AA_TO_INDEX.values()) + 1
#         types_array_res = np.zeros((len(residue_types), 1))
#         for i, name in enumerate(residue_types):
#             types_array_res[i] = pc.AA_TO_INDEX.get(name, unknown_name_idx)
#         property_dict["residue_types"] = torch.tensor(types_array_res).type(dtype)

#     if atom_coordinates is not None:
#         property_dict["atom_coordinates"] = torch.tensor(atom_coordinates, dtype=dtype)
        
#     if residue_coordinates is not None:
#         property_dict["residue_coordinates"] = torch.tensor(
#             residue_coordinates, dtype=dtype
#         )
#     if residue_ids is not None:
#         property_dict["residue_ids"] = torch.tensor(residue_ids, dtype=dtype)
#     if chain_ids is not None:
#         property_dict["chain_ids"] = torch.zeros(len(chain_ids), dtype=dtype)
#         property_dict["chain_ids"][chain_ids == "L"] = 1
#     return property_dict


# class NodeRepresentation(Enum):
#     Surface = "surface"
#     Atom = "atom"
#     Residue = "residue"


# class PairedPDB(HeteroData):  # type: ignore
#     @classmethod
#     def from_tuple_system(
#         cls,
    
#         tupal: tuple = (Structure , Structure , Structure),
        
#         add_edges: bool = True,
#         k: int = 10,
        
#     ) -> PairedPDB:
#         return cls.from_structure_pair(
            
#             holo=tupal[0],
#             apo=tupal[1],
#             add_edges=add_edges,
#             k=k,
#         )

#     @classmethod
#     def from_structure_pair(
#         cls,

#         holo: Structure,
#         apo: Structure,
        
#         add_edges: bool = True,
#         k: int = 10,
#     ) -> PairedPDB:
#         graph = cls()
#         holo_calpha = holo.filter("atom_name", mask=["CA"])
#         apo_calpha = apo.filter("atom_name", mask=["CA"])
#         r_h = (holo.dataframe['chain_id'] == 'R').sum()
#         r_a = (apo.dataframe['chain_id'] == 'R').sum()
        
#         holo_r_props = structure2tensor(
#             atom_coordinates=holo.coords[:r_h],
#             atom_types=holo.atom_array.atom_name[:r_h],
#             element_types=holo.atom_array.element[:r_h],
#             residue_coordinates=holo_calpha.coords[:r_h],
#             residue_types=holo_calpha.atom_array.res_name[:r_h],
#             residue_ids=holo_calpha.atom_array.res_id[:r_h],
#         )
#         holo_l_props = structure2tensor(
#             atom_coordinates=holo.coords[r_h:],
            
#             atom_types=holo.atom_array.atom_name[r_h:],
#             element_types=holo.atom_array.element[r_h:],
#             residue_coordinates=holo_calpha.coords[r_h:],
#             residue_types=holo_calpha.atom_array.res_name[r_h:],
#             residue_ids=holo_calpha.atom_array.res_id[r_h:],
#         )
#         apo_r_props = structure2tensor(
#             atom_coordinates=apo.coords[:r_a],
#             atom_types=apo.atom_array.atom_name[:r_a],
#             element_types=apo.atom_array.element[:r_a],
#             residue_coordinates=apo_calpha.coords[:r_a],
#             residue_types=apo_calpha.atom_array.res_name[:r_a],
#             residue_ids=apo_calpha.atom_array.res_id[:r_a],
#         )
#         apo_l_props = structure2tensor(
#             atom_coordinates=apo.coords[r_a:],
#             atom_types=apo.atom_array.atom_name[r_a:],
#             element_types=apo.atom_array.element[r_a:],
#             residue_coordinates=apo_calpha.coords[r_a:],
#             residue_types=apo_calpha.atom_array.res_name[r_a:],
#             residue_ids=apo_calpha.atom_array.res_id[r_a:],
#         )
       
        
       
#         graph["ligand"].x = apo_l_props["atom_types"]
#         graph["ligand"].pos = apo_l_props["atom_coordinates"]
#         graph["receptor"].x = apo_r_props["atom_types"]
#         graph["receptor"].pos = apo_r_props["atom_coordinates"]
#         graph["ligand"].y = holo_l_props["atom_coordinates"]
#         # graph["ligand"].pos = holo_l_props["atom_coordinates"]
#         graph["receptor"].y = holo_r_props["atom_coordinates"]
#         # graph["receptor"].pos = holo_r_props["atom_coordinates"]
#         if add_edges and torch_cluster_installed:
#                 graph["ligand"].edge_index = knn_graph(
#                     graph["ligand"].pos, k=k
#                 )
#                 graph["receptor"].edge_index = knn_graph(
#                     graph["receptor"].pos, k=k
#                 )
#                 # graph["ligand"].edge_index = knn_graph(
#                 #     graph["ligand"].pos, k=k
#                 # )
#                 # graph["receptor"].edge_index = knn_graph(
#                 #     graph["receptor"].pos, k=k
#                 # )

#         return graph
    
# index = get_index()
# # train = index[index.split == "train"].copy()
# # val = index[index.split == "val"].copy()
# # test = index[index.split == "test"].copy()   
# # train_filtered = train[(train['apo_R'] == True) & (train['apo_L'] == True)].copy()
# # val_filtered = val[(val['apo_R'] == True) & (val['apo_L'] == True)].copy()
# # test_filtered = test[(test['apo_R'] == True) & (test['apo_L'] == True)].copy()

# # train_apo = [get_system(train_filtered.id.iloc[i]).create_masked_bound_unbound_complexes(
# #     monomer_types=["apo"], renumber_residues=True
# # ) for i in range(0, 10000)]

# # train_new_apo11 = [get_system(train_filtered.id.iloc[i]).create_masked_bound_unbound_complexes(
# #     monomer_types=["apo"], renumber_residues=True
# # ) for i in range(10000,10908)]

# # train_new_apo12 = [get_system(train_filtered.id.iloc[i]).create_masked_bound_unbound_complexes(
# # #     monomer_types=["apo"], renumber_residues=True
# # ) for i in range(10908,11816)]

# # val_new_apo1 = [get_system(val_filtered.id.iloc[i]).create_masked_bound_unbound_complexes(
# #     monomer_types=["apo"], renumber_residues=True
# # ) for i in range(0,342)]

# # test_new_apo1 = [get_system(test_filtered.id.iloc[i]).create_masked_bound_unbound_complexes(
# #     monomer_types=["apo"], renumber_residues=True
# # ) for i in range(0,342)]

# # val_apo = val_new_apo1 + train_new_apo11
# # test_apo = test_new_apo1 + train_new_apo12

# import pickle
# # with open("train_apo.pkl", "wb") as file:
# #     pickle.dump(train_apo, file)
    
# # with open("val_apo.pkl", "wb") as file:
# #     pickle.dump(val_apo, file)
    
# # with open("test_apo.pkl", "wb") as file:
# #     pickle.dump(test_apo, file)
# with open("train_apo.pkl", "rb") as file:
#     train_apo = pickle.load(file)
    
# with open("val_apo.pkl", "rb") as file:
#     val_apo = pickle.load(file)
    
# with open("test_apo.pkl", "rb") as file:
#     test_apo = pickle.load(file)
    
# # # %%
# train_geo = [PairedPDB.from_tuple_system(train_apo[i]) for i in range(0,len(train_apo))]
# val_geo = [PairedPDB.from_tuple_system(val_apo[i]) for i in range(0,len(val_apo))]
# test_geo = [PairedPDB.from_tuple_system(test_apo[i]) for i in range(0,len(test_apo))]
# # # %%
# # Train= []
# # for i in range(0,len(train_geo)):
# #     data = HeteroData()
# #     data["ligand"].x = train_geo[i]["ligand"].x
# #     data['ligand'].y = train_geo[i]["ligand"].y
# #     data["ligand"].pos = train_geo[i]["ligand"].pos
# #     data["ligand","ligand"].edge_index = train_geo[i]["ligand"]
# #     data["receptor"].x = train_geo[i]["receptor"].x
# #     data['receptor'].y = train_geo[i]["receptor"].y
# #     data["receptor"].pos = train_geo[i]["receptor"].pos
# #     data["receptor","receptor"].edge_index = train_geo[i]["receptor"]
# #     #torch.save(data, f"./data/processed/train_sample_{i}.pt")
# #     Train.append(data)
    
# from torch_geometric.data import HeteroData
# import torch_sparse
# from torch_geometric.edge_index import to_sparse_tensor
# import torch

# # Example of converting edge indices to SparseTensor and storing them in HeteroData

# Train1 = []
# for i in range(len(train_geo)):
#     data = HeteroData()
#     # Define ligand node features
#     data["ligand"].x = train_geo[i]["ligand"].x
#     data["ligand"].y = train_geo[i]["ligand"].y
#     data["ligand"].pos = train_geo[i]["ligand"].pos
#     # Convert ligand edge index to SparseTensor
#     ligand_edge_index = train_geo[i]["ligand"]["edge_index"]
#     data["ligand", "ligand"].edge_index = to_sparse_tensor(ligand_edge_index, sparse_sizes=(train_geo[i]["ligand"].num_nodes,)*2)

#     # Define receptor node features
#     data["receptor"].x = train_geo[i]["receptor"].x
#     data["receptor"].y = train_geo[i]["receptor"].y
#     data["receptor"].pos = train_geo[i]["receptor"].pos
#     # Convert receptor edge index to SparseTensor
#     receptor_edge_index = train_geo[i]["receptor"]["edge_index"]
#     data["receptor", "receptor"].edge_index = to_sparse_tensor(receptor_edge_index, sparse_sizes=(train_geo[i]["receptor"].num_nodes,)*2)

#     Train1.append(data)


# # # %%
# # Val= []
# # for i in range(0,len(val_geo)):
# #     data = HeteroData()
# #     data["ligand"].x = val_geo[i]["ligand"].x
# #     data['ligand'].y = val_geo[i]["ligand"].y
# #     data["ligand"].pos = val_geo[i]["ligand"].pos
# #     data["ligand","ligand"].edge_index = val_geo[i]["ligand"]
# #     data["receptor"].x = val_geo[i]["receptor"].x
# #     data['receptor'].y = val_geo[i]["receptor"].y
# #     data["receptor"].pos = val_geo[i]["receptor"].pos
# #     data["receptor","receptor"].edge_index = val_geo[i]["receptor"]
# #     #torch.save(data, f"./data/processed/val_sample_{i}.pt")
# #     Val.append(data)
# Val1 = []
# for i in range(len(val_geo)):
#     data = HeteroData()
#     # Define ligand node features
#     data["ligand"].x = val_geo[i]["ligand"].x
#     data["ligand"].y = val_geo[i]["ligand"].y
#     data["ligand"].pos = val_geo[i]["ligand"].pos
#     # Convert ligand edge index to SparseTensor
#     ligand_edge_index = val_geo[i]["ligand"]["edge_index"]
#     data["ligand", "ligand"].edge_index = to_sparse_tensor(ligand_edge_index, sparse_sizes=(val_geo[i]["ligand"].num_nodes,)*2)

#     # Define receptor node features
#     data["receptor"].x = val_geo[i]["receptor"].x
#     data["receptor"].y = val_geo[i]["receptor"].y
#     data["receptor"].pos = val_geo[i]["receptor"].pos
#     # Convert receptor edge index to SparseTensor
#     receptor_edge_index = val_geo[i]["receptor"]["edge_index"]
#     data["receptor", "receptor"].edge_index = to_sparse_tensor(receptor_edge_index, sparse_sizes=(val_geo[i]["receptor"].num_nodes,)*2)

#     Val1.append(data)
# # # %%
# # Test= []
# # for i in range(0,len(test_geo)):
# #     data = HeteroData()
# #     data["ligand"].x = test_geo[i]["ligand"].x
# #     data['ligand'].y = test_geo[i]["ligand"].y
# #     data["ligand"].pos = test_geo[i]["ligand"].pos
# #     data["ligand","ligand"].edge_index = test_geo[i]["ligand"]
# #     data["receptor"].x = test_geo[i]["receptor"].x
# #     data['receptor'].y = test_geo[i]["receptor"].y
# #     data["receptor"].pos = test_geo[i]["receptor"].pos
# #     data["receptor","receptor"].edge_index = test_geo[i]["receptor"]
# #     #torch.save(data, f"./data/processed/test_sample_{i}.pt")
# #     Test.append(data)
# Test1 = []
# for i in range(len(test_geo)):
#     data = HeteroData()
#     # Define ligand node features
#     data["ligand"].x = test_geo[i]["ligand"].x
#     data["ligand"].y = test_geo[i]["ligand"].y
#     data["ligand"].pos = test_geo[i]["ligand"].pos
#     # Convert ligand edge index to SparseTensor
#     ligand_edge_index = test_geo[i]["ligand"]["edge_index"]
#     data["ligand", "ligand"].edge_index = to_sparse_tensor(ligand_edge_index, sparse_sizes=(test_geo[i]["ligand"].num_nodes,)*2)

#     # Define receptor node features
#     data["receptor"].x = test_geo[i]["receptor"].x
#     data["receptor"].y = test_geo[i]["receptor"].y
#     data["receptor"].pos = test_geo[i]["receptor"].pos
#     # Convert receptor edge index to SparseTensor
#     receptor_edge_index = test_geo[i]["receptor"]["edge_index"]
#     data["receptor", "receptor"].edge_index = to_sparse_tensor(receptor_edge_index, sparse_sizes=(test_geo[i]["receptor"].num_nodes,)*2)

#     Test1.append(data)
# # with open("Train.pkl", "wb") as file:
# #     pickle.dump(Train, file)
    
# # with open("Val.pkl", "wb") as file:
# #     pickle.dump(Val, file)
    
# # with open("Test.pkl", "wb") as file:
# #     pickle.dump(Test, file)
    
# # with open("Train1.pkl", "rb") as file:
# #     Train= pickle.load(file)
    
# # with open("Val.pkl", "rb") as file:
# #     Val = pickle.load(file)
    
# # with open("Test.pkl", "rb") as file:
# #     Test = pickle.load(file)