Sukanyaaa commited on
Commit
4dc8f8f
·
1 Parent(s): 3680967

fix inference_app.py

Browse files
Files changed (1) hide show
  1. inference_app.py +5 -5
inference_app.py CHANGED
@@ -287,7 +287,7 @@ class PairedPDB(HeteroData): # type: ignore
287
  return graph
288
 
289
  #create_graph takes inputs apo_ligand, apo_residue and paired holo as pdb3(ground truth).
290
- def create_graph(pdb1, pdb2, pdb3='/home/sukanya/iitm_bisect_pinder_submission/test_out.pdb', k=5):
291
  r"""
292
  Create a heterogeneous graph from two PDB files, with the ligand and receptor
293
  as separate nodes, and their respective features and edges.
@@ -304,19 +304,19 @@ def create_graph(pdb1, pdb2, pdb3='/home/sukanya/iitm_bisect_pinder_submission/t
304
  # Extract coordinates from PDB files
305
  coords1 = torch.tensor(extract_coordinates_from_pdb(pdb1),dtype=torch.float)
306
  coords2 = torch.tensor(extract_coordinates_from_pdb(pdb2),dtype=torch.float)
307
- coords3 = torch.tensor(extract_coordinates_from_pdb(pdb3),dtype=torch.float)
308
  # Create the HeteroData object
309
  data = HeteroData()
310
 
311
  # Define ligand node features
312
  data["ligand"].x = torch.tensor(coords1, dtype=torch.float)
313
  data["ligand"].pos = coords1
314
- data["ligand"].y = torch.tensor(coords3[:len(coords1)], dtype=torch.float)
315
 
316
  # Define receptor node features
317
  data["receptor"].x = torch.tensor(coords2, dtype=torch.float)
318
  data["receptor"].pos = coords2
319
- data["receptor"].y = torch.tensor(coords3[len(coords1):], dtype=torch.float)
320
 
321
  # Construct k-NN graph for ligand
322
  ligand_edge_index = knn_graph(data["ligand"].pos, k=k)
@@ -890,7 +890,7 @@ model.eval()
890
  def predict (input_seq_1, input_msa_1, input_protein_1, input_seq_2,input_msa_2, input_protein_2):
891
  start_time = time.time()
892
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
893
- data = create_graph(input_protein_1, input_protein_2, './test_out (1).pdb', k=10)
894
 
895
  with torch.no_grad():
896
  mat, vect = model(data)
 
287
  return graph
288
 
289
  #create_graph takes inputs apo_ligand, apo_residue and paired holo as pdb3(ground truth).
290
+ def create_graph(pdb1, pdb2, k=5):
291
  r"""
292
  Create a heterogeneous graph from two PDB files, with the ligand and receptor
293
  as separate nodes, and their respective features and edges.
 
304
  # Extract coordinates from PDB files
305
  coords1 = torch.tensor(extract_coordinates_from_pdb(pdb1),dtype=torch.float)
306
  coords2 = torch.tensor(extract_coordinates_from_pdb(pdb2),dtype=torch.float)
307
+ # coords3 = torch.tensor(extract_coordinates_from_pdb(pdb3),dtype=torch.float)
308
  # Create the HeteroData object
309
  data = HeteroData()
310
 
311
  # Define ligand node features
312
  data["ligand"].x = torch.tensor(coords1, dtype=torch.float)
313
  data["ligand"].pos = coords1
314
+ # data["ligand"].y = torch.tensor(coords3[:len(coords1)], dtype=torch.float)
315
 
316
  # Define receptor node features
317
  data["receptor"].x = torch.tensor(coords2, dtype=torch.float)
318
  data["receptor"].pos = coords2
319
+ # data["receptor"].y = torch.tensor(coords3[len(coords1):], dtype=torch.float)
320
 
321
  # Construct k-NN graph for ligand
322
  ligand_edge_index = knn_graph(data["ligand"].pos, k=k)
 
890
  def predict (input_seq_1, input_msa_1, input_protein_1, input_seq_2,input_msa_2, input_protein_2):
891
  start_time = time.time()
892
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
893
+ data = create_graph(input_protein_1, input_protein_2, k=10)
894
 
895
  with torch.no_grad():
896
  mat, vect = model(data)