deFogify / DeFogify_Main.py
MLap's picture
Upload DeFogify_Main.py
3be77ba verified
raw
history blame
6.84 kB
import cv2
import numpy as np
import gradio as gr
import tempfile
import os
from tqdm import tqdm
# Original Functions
def dark_channel(img, size=15):
r, g, b = cv2.split(img)
min_img = cv2.min(r, cv2.min(g, b))
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (size, size))
dc_img = cv2.erode(min_img, kernel)
return dc_img
def get_atmo(img, percent=0.001):
mean_perpix = np.mean(img, axis=2).reshape(-1)
mean_topper = mean_perpix[:int(img.shape[0] * img.shape[1] * percent)]
return np.mean(mean_topper)
def get_trans(img, atom, w=0.95):
x = img / atom
t = 1 - w * dark_channel(x, 15)
return t
def guided_filter(p, i, r, e):
mean_I = cv2.boxFilter(i, cv2.CV_64F, (r, r))
mean_p = cv2.boxFilter(p, cv2.CV_64F, (r, r))
corr_I = cv2.boxFilter(i * i, cv2.CV_64F, (r, r))
corr_Ip = cv2.boxFilter(i * p, cv2.CV_64F, (r, r))
var_I = corr_I - mean_I * mean_I
cov_Ip = corr_Ip - mean_I * mean_p
a = cov_Ip / (var_I + e)
b = mean_p - a * mean_I
mean_a = cv2.boxFilter(a, cv2.CV_64F, (r, r))
mean_b = cv2.boxFilter(b, cv2.CV_64F, (r, r))
q = mean_a * i + mean_b
return q
def dehaze(image):
img = image.astype('float64') / 255
img_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY).astype('float64') / 255
atom = get_atmo(img)
trans = get_trans(img, atom)
trans_guided = guided_filter(trans, img_gray, 20, 0.0001)
trans_guided = np.maximum(trans_guided, 0.25) # Ensure trans_guided is not below 0.25
result = np.empty_like(img)
for i in range(3):
result[:, :, i] = (img[:, :, i] - atom) / trans_guided + atom
result = np.clip(result, 0, 1)
return (result * 255).astype(np.uint8)
# Single Image Processing
def process_single_image(image):
dehazed_img = dehaze(image)
return dehazed_img
# Batch Processing Function for Multiple Images with Progress Bar
def process_images(files):
temp_dir = tempfile.mkdtemp()
output_files = []
for file in tqdm(files, desc="Processing Images"):
img = cv2.imread(file.name)
if img is not None:
dehazed_img = dehaze(img)
output_path = os.path.join(temp_dir, os.path.basename(file.name))
cv2.imwrite(output_path, dehazed_img)
output_files.append(output_path)
return output_files
# Video Dehazing Function with Gradio Progress Bar and Error Handling
def dehaze_video(input_video_path, output_video_path, progress=None):
try:
cap = cv2.VideoCapture(input_video_path)
if not cap.isOpened():
raise ValueError("Error: Could not open video.")
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
fps = int(cap.get(cv2.CAP_PROP_FPS))
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
if total_frames <= 0: # Assume a constant count for webcam scenarios
total_frames = 1000
out = cv2.VideoWriter(output_video_path, fourcc, fps, (frame_width, frame_height))
frame_count = 0
if progress is not None:
progress(0, desc="Processing Video", unit="frame")
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
dehazed_frame = dehaze(frame)
out.write(dehazed_frame)
frame_count += 1
if progress is not None:
progress(frame_count / total_frames) # Ensure progress is within 0-1 range
cap.release()
out.release()
print(f"\nDehazed video saved to: {output_video_path}")
except Exception as e:
print(f"An error occurred during video processing: {e}")
# Gradio Video Processing Wrapper
def process_video(file):
input_video_path = file # File is a string representing the path
output_video_path = os.path.join(tempfile.mkdtemp(), "dehazed_video.mp4")
progress = gr.Progress()
dehaze_video(input_video_path, output_video_path, progress)
return output_video_path
# Real-Time Webcam Processing with Gradio Progress Bar
def dehaze_webcam(progress=gr.Progress()):
try:
cap = cv2.VideoCapture(0) # Capture from the first webcam
if not cap.isOpened():
raise ValueError("Unable to open webcam")
frame_count = 0
total_frames = 100 # Arbitrary number for progress bar
progress(0, desc="Processing Webcam Feed", unit="frame")
while frame_count < total_frames:
ret, frame = cap.read()
if not ret:
break
dehazed_frame = dehaze(frame)
frame_count += 1
progress(frame_count / total_frames) # Ensure progress is within 0-1 range
cv2.imshow('Dehazed Webcam Feed', dehazed_frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
progress(1) # Ensure progress bar reaches 100%
except Exception as e:
print(f"An error occurred during webcam processing: {e}")
# Gradio Webcam Processing Wrapper
def process_webcam():
progress = gr.Progress()
dehaze_webcam(progress)
return "Webcam processing completed."
# Example Images for Testing
example_images = [
"Sample Images for Testing/ai-generated-9025430_1280.jpg",
"Sample Images for Testing/meadow-5648849_1280.jpg",
"Sample Images for Testing/mountains-7662717_1280.jpg",
"Sample Images for Testing/nature-6722031_1280.jpg"
]
example_paths = []
for i, img_path in enumerate(example_images):
img = cv2.imread(img_path)
save_path = f"example_image_{i+1}.png"
cv2.imwrite(save_path, img)
example_paths.append([save_path])
# Gradio Interfaces
PixelDehazer = gr.Interface(
fn=process_single_image,
inputs=gr.Image(type="numpy"),
outputs="image",
examples=example_paths,
cache_examples=False,
description="Upload a single image to remove haze."
)
BatchDehazer = gr.Interface(
fn=process_images,
inputs=gr.Files(label="Upload Multiple Images", file_types=["image"]),
outputs=gr.Files(label="Download Dehazed Images"),
description="Upload multiple images to remove haze. Download the processed dehazed images."
)
VideoDehazer = gr.Interface(
fn=process_video,
inputs=gr.Video(label="Upload a Video"),
outputs=gr.File(label="Download Dehazed Video"),
description="Upload a video to remove haze. Download the processed dehazed video."
)
# Combined Gradio App
app = gr.TabbedInterface(
[PixelDehazer, BatchDehazer, VideoDehazer],
["Single Image Dehazing", "Batch Image Dehazing", "Video Dehazing"],
title="DeFogify App"
)
# Launch the Gradio App
if __name__ == "__main__":
app.launch()