|
import cv2 |
|
import numpy as np |
|
import gradio as gr |
|
import tempfile |
|
import os |
|
from tqdm import tqdm |
|
|
|
|
|
def dark_channel(img, size=15): |
|
r, g, b = cv2.split(img) |
|
min_img = cv2.min(r, cv2.min(g, b)) |
|
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (size, size)) |
|
dc_img = cv2.erode(min_img, kernel) |
|
return dc_img |
|
|
|
def get_atmo(img, percent=0.001): |
|
mean_perpix = np.mean(img, axis=2).reshape(-1) |
|
mean_topper = mean_perpix[:int(img.shape[0] * img.shape[1] * percent)] |
|
return np.mean(mean_topper) |
|
|
|
def get_trans(img, atom, w=0.95): |
|
x = img / atom |
|
t = 1 - w * dark_channel(x, 15) |
|
return t |
|
|
|
def guided_filter(p, i, r, e): |
|
mean_I = cv2.boxFilter(i, cv2.CV_64F, (r, r)) |
|
mean_p = cv2.boxFilter(p, cv2.CV_64F, (r, r)) |
|
corr_I = cv2.boxFilter(i * i, cv2.CV_64F, (r, r)) |
|
corr_Ip = cv2.boxFilter(i * p, cv2.CV_64F, (r, r)) |
|
var_I = corr_I - mean_I * mean_I |
|
cov_Ip = corr_Ip - mean_I * mean_p |
|
a = cov_Ip / (var_I + e) |
|
b = mean_p - a * mean_I |
|
mean_a = cv2.boxFilter(a, cv2.CV_64F, (r, r)) |
|
mean_b = cv2.boxFilter(b, cv2.CV_64F, (r, r)) |
|
q = mean_a * i + mean_b |
|
return q |
|
|
|
def dehaze(image): |
|
img = image.astype('float64') / 255 |
|
img_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY).astype('float64') / 255 |
|
atom = get_atmo(img) |
|
trans = get_trans(img, atom) |
|
trans_guided = guided_filter(trans, img_gray, 20, 0.0001) |
|
trans_guided = np.maximum(trans_guided, 0.25) |
|
result = np.empty_like(img) |
|
for i in range(3): |
|
result[:, :, i] = (img[:, :, i] - atom) / trans_guided + atom |
|
result = np.clip(result, 0, 1) |
|
return (result * 255).astype(np.uint8) |
|
|
|
|
|
def process_single_image(image): |
|
dehazed_img = dehaze(image) |
|
return dehazed_img |
|
|
|
|
|
def process_images(files): |
|
temp_dir = tempfile.mkdtemp() |
|
output_files = [] |
|
|
|
for file in tqdm(files, desc="Processing Images"): |
|
img = cv2.imread(file.name) |
|
if img is not None: |
|
dehazed_img = dehaze(img) |
|
output_path = os.path.join(temp_dir, os.path.basename(file.name)) |
|
cv2.imwrite(output_path, dehazed_img) |
|
output_files.append(output_path) |
|
|
|
return output_files |
|
|
|
|
|
def dehaze_video(input_video_path, output_video_path, progress=None): |
|
try: |
|
cap = cv2.VideoCapture(input_video_path) |
|
if not cap.isOpened(): |
|
raise ValueError("Error: Could not open video.") |
|
|
|
fourcc = cv2.VideoWriter_fourcc(*'mp4v') |
|
fps = int(cap.get(cv2.CAP_PROP_FPS)) |
|
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) |
|
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) |
|
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) |
|
|
|
if total_frames <= 0: |
|
total_frames = 1000 |
|
|
|
out = cv2.VideoWriter(output_video_path, fourcc, fps, (frame_width, frame_height)) |
|
frame_count = 0 |
|
|
|
if progress is not None: |
|
progress(0, desc="Processing Video", unit="frame") |
|
|
|
while cap.isOpened(): |
|
ret, frame = cap.read() |
|
if not ret: |
|
break |
|
dehazed_frame = dehaze(frame) |
|
out.write(dehazed_frame) |
|
frame_count += 1 |
|
|
|
if progress is not None: |
|
progress(frame_count / total_frames) |
|
|
|
cap.release() |
|
out.release() |
|
print(f"\nDehazed video saved to: {output_video_path}") |
|
except Exception as e: |
|
print(f"An error occurred during video processing: {e}") |
|
|
|
|
|
def process_video(file): |
|
input_video_path = file |
|
output_video_path = os.path.join(tempfile.mkdtemp(), "dehazed_video.mp4") |
|
progress = gr.Progress() |
|
dehaze_video(input_video_path, output_video_path, progress) |
|
return output_video_path |
|
|
|
|
|
def dehaze_webcam(progress=gr.Progress()): |
|
try: |
|
cap = cv2.VideoCapture(0) |
|
if not cap.isOpened(): |
|
raise ValueError("Unable to open webcam") |
|
|
|
frame_count = 0 |
|
total_frames = 100 |
|
progress(0, desc="Processing Webcam Feed", unit="frame") |
|
|
|
while frame_count < total_frames: |
|
ret, frame = cap.read() |
|
if not ret: |
|
break |
|
dehazed_frame = dehaze(frame) |
|
frame_count += 1 |
|
progress(frame_count / total_frames) |
|
|
|
cv2.imshow('Dehazed Webcam Feed', dehazed_frame) |
|
if cv2.waitKey(1) & 0xFF == ord('q'): |
|
break |
|
|
|
cap.release() |
|
cv2.destroyAllWindows() |
|
progress(1) |
|
except Exception as e: |
|
print(f"An error occurred during webcam processing: {e}") |
|
|
|
|
|
def process_webcam(): |
|
progress = gr.Progress() |
|
dehaze_webcam(progress) |
|
return "Webcam processing completed." |
|
|
|
|
|
example_images = [ |
|
"Sample Images for Testing/ai-generated-9025430_1280.jpg", |
|
"Sample Images for Testing/meadow-5648849_1280.jpg", |
|
"Sample Images for Testing/mountains-7662717_1280.jpg", |
|
"Sample Images for Testing/nature-6722031_1280.jpg" |
|
] |
|
|
|
example_paths = [] |
|
for i, img_path in enumerate(example_images): |
|
img = cv2.imread(img_path) |
|
save_path = f"example_image_{i+1}.png" |
|
cv2.imwrite(save_path, img) |
|
example_paths.append([save_path]) |
|
|
|
|
|
PixelDehazer = gr.Interface( |
|
fn=process_single_image, |
|
inputs=gr.Image(type="numpy"), |
|
outputs="image", |
|
examples=example_paths, |
|
cache_examples=False, |
|
description="Upload a single image to remove haze." |
|
) |
|
|
|
BatchDehazer = gr.Interface( |
|
fn=process_images, |
|
inputs=gr.Files(label="Upload Multiple Images", file_types=["image"]), |
|
outputs=gr.Files(label="Download Dehazed Images"), |
|
description="Upload multiple images to remove haze. Download the processed dehazed images." |
|
) |
|
|
|
VideoDehazer = gr.Interface( |
|
fn=process_video, |
|
inputs=gr.Video(label="Upload a Video"), |
|
outputs=gr.File(label="Download Dehazed Video"), |
|
description="Upload a video to remove haze. Download the processed dehazed video." |
|
) |
|
|
|
|
|
app = gr.TabbedInterface( |
|
[PixelDehazer, BatchDehazer, VideoDehazer], |
|
["Single Image Dehazing", "Batch Image Dehazing", "Video Dehazing"], |
|
title="DeFogify App" |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
app.launch() |