MLap commited on
Commit
4ed30ee
·
1 Parent(s): b08376d

5 samples in main

Browse files
Files changed (1) hide show
  1. DeFogify_Main.py +30 -7
DeFogify_Main.py CHANGED
@@ -2,19 +2,19 @@ import cv2
2
  import numpy as np
3
  import gradio as gr
4
 
5
- def dark_channel(img, size = 15):
6
  r, g, b = cv2.split(img)
7
  min_img = cv2.min(r, cv2.min(g, b))
8
  kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (size, size))
9
  dc_img = cv2.erode(min_img, kernel)
10
  return dc_img
11
 
12
- def get_atmo(img, percent = 0.001):
13
- mean_perpix = np.mean(img, axis = 2).reshape(-1)
14
  mean_topper = mean_perpix[:int(img.shape[0] * img.shape[1] * percent)]
15
  return np.mean(mean_topper)
16
 
17
- def get_trans(img, atom, w = 0.95):
18
  x = img / atom
19
  t = 1 - w * dark_channel(x, 15)
20
  return t
@@ -48,8 +48,31 @@ def dehaze(image):
48
 
49
  # Ensure the result is in the range [0, 1]
50
  result = np.clip(result, 0, 1)
51
- return (result * 255).astype(np.uint8)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52
 
53
  # Create Gradio interface
54
- PixelDehazer = gr.Interface(fn=dehaze, inputs=gr.Image(type="numpy"), outputs="image")
55
- PixelDehazer.launch()
 
 
 
 
 
 
 
 
2
  import numpy as np
3
  import gradio as gr
4
 
5
+ def dark_channel(img, size=15):
6
  r, g, b = cv2.split(img)
7
  min_img = cv2.min(r, cv2.min(g, b))
8
  kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (size, size))
9
  dc_img = cv2.erode(min_img, kernel)
10
  return dc_img
11
 
12
+ def get_atmo(img, percent=0.001):
13
+ mean_perpix = np.mean(img, axis=2).reshape(-1)
14
  mean_topper = mean_perpix[:int(img.shape[0] * img.shape[1] * percent)]
15
  return np.mean(mean_topper)
16
 
17
+ def get_trans(img, atom, w=0.95):
18
  x = img / atom
19
  t = 1 - w * dark_channel(x, 15)
20
  return t
 
48
 
49
  # Ensure the result is in the range [0, 1]
50
  result = np.clip(result, 0, 1)
51
+ return (result * 255).astype(np.uint8)
52
+
53
+ # Save example images for testing
54
+ example_images = [
55
+ "Sample Images for Testing/ai-generated-9025430_1280.jpg",
56
+ "Sample Images for Testing/meadow-5648849_1280.jpg",
57
+ "Sample Images for Testing/mountains-7662717_1280.jpg",
58
+ "Sample Images for Testing/mountains-8292685_1280.jpg",
59
+ "Sample Images for Testing/nature-6722031_1280.jpg"
60
+ ]
61
+
62
+ example_paths = []
63
+ for i, img_path in enumerate(example_images):
64
+ img = cv2.imread(img_path)
65
+ save_path = f"example_image_{i+1}.png"
66
+ cv2.imwrite(save_path, img)
67
+ example_paths.append([save_path])
68
 
69
  # Create Gradio interface
70
+ PixelDehazer = gr.Interface(
71
+ fn=dehaze,
72
+ inputs=gr.Image(type="numpy"),
73
+ outputs="image",
74
+ examples=example_paths,
75
+ cache_examples=False
76
+ )
77
+
78
+ PixelDehazer.launch()