|
from pathlib import Path |
|
from typing import Optional |
|
|
|
from PIL import Image |
|
from PIL.ImageOps import exif_transpose |
|
from torch.utils.data import Dataset |
|
from torchvision import transforms |
|
import json |
|
import random |
|
from facenet_pytorch import MTCNN |
|
import torch |
|
|
|
from utils.utils import extract_faces_and_landmarks, REFERNCE_FACIAL_POINTS_RELATIVE |
|
|
|
def load_image(image_path: str) -> Image: |
|
image = Image.open(image_path) |
|
image = exif_transpose(image) |
|
if not image.mode == "RGB": |
|
image = image.convert("RGB") |
|
return image |
|
|
|
|
|
class ImageDataset(Dataset): |
|
""" |
|
A dataset to prepare the instance and class images with the prompts for fine-tuning the model. |
|
It pre-processes the images. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
instance_data_root, |
|
instance_prompt, |
|
metadata_path: Optional[str] = None, |
|
prompt_in_filename=False, |
|
use_only_vanilla_for_encoder=False, |
|
concept_placeholder='a face', |
|
size=1024, |
|
center_crop=False, |
|
aug_images=False, |
|
use_only_decoder_prompts=False, |
|
crop_head_for_encoder_image=False, |
|
random_target_prob=0.0, |
|
): |
|
self.mtcnn = MTCNN(device='cuda:0') |
|
self.mtcnn.forward = self.mtcnn.detect |
|
resize_factor = 1.3 |
|
self.resized_reference_points = REFERNCE_FACIAL_POINTS_RELATIVE / resize_factor + (resize_factor - 1) / (2 * resize_factor) |
|
self.size = size |
|
self.center_crop = center_crop |
|
self.concept_placeholder = concept_placeholder |
|
self.prompt_in_filename = prompt_in_filename |
|
self.aug_images = aug_images |
|
|
|
self.instance_prompt = instance_prompt |
|
self.custom_instance_prompts = None |
|
self.name_to_label = None |
|
self.crop_head_for_encoder_image = crop_head_for_encoder_image |
|
self.random_target_prob = random_target_prob |
|
|
|
self.use_only_decoder_prompts = use_only_decoder_prompts |
|
|
|
self.instance_data_root = Path(instance_data_root) |
|
|
|
if not self.instance_data_root.exists(): |
|
raise ValueError(f"Instance images root {self.instance_data_root} doesn't exist.") |
|
|
|
if metadata_path is not None: |
|
with open(metadata_path, 'r') as f: |
|
self.name_to_label = json.load(f) |
|
|
|
self.label_to_names = {} |
|
for name, label in self.name_to_label.items(): |
|
if use_only_vanilla_for_encoder and 'vanilla' not in name: |
|
continue |
|
if label not in self.label_to_names: |
|
self.label_to_names[label] = [] |
|
self.label_to_names[label].append(name) |
|
self.all_paths = [self.instance_data_root / filename for filename in self.name_to_label.keys()] |
|
|
|
|
|
n_all_paths = len(self.all_paths) |
|
self.all_paths = [path for path in self.all_paths if path.exists()] |
|
print(f'Found {len(self.all_paths)} out of {n_all_paths} paths.') |
|
else: |
|
self.all_paths = [path for path in list(Path(instance_data_root).glob('**/*')) if |
|
path.suffix.lower() in [".png", ".jpg", ".jpeg"]] |
|
|
|
self.all_paths = sorted(self.all_paths, key=lambda x: x.stem) |
|
|
|
self.custom_instance_prompts = None |
|
|
|
self._length = len(self.all_paths) |
|
|
|
self.class_data_root = None |
|
|
|
self.image_transforms = transforms.Compose( |
|
[ |
|
transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR), |
|
transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size), |
|
transforms.ToTensor(), |
|
transforms.Normalize([0.5], [0.5]), |
|
] |
|
) |
|
|
|
if self.prompt_in_filename: |
|
self.prompts_set = set([self._path_to_prompt(path) for path in self.all_paths]) |
|
else: |
|
self.prompts_set = set([self.instance_prompt]) |
|
|
|
if self.aug_images: |
|
self.aug_transforms = transforms.Compose( |
|
[ |
|
transforms.RandomResizedCrop(size, scale=(0.8, 1.0), ratio=(1.0, 1.0)), |
|
transforms.RandomHorizontalFlip(p=0.5) |
|
] |
|
) |
|
|
|
def __len__(self): |
|
return self._length |
|
|
|
def _path_to_prompt(self, path): |
|
|
|
split_path = path.stem.split('_') |
|
while split_path[-1].isnumeric(): |
|
split_path = split_path[:-1] |
|
|
|
prompt = ' '.join(split_path) |
|
|
|
prompt = prompt.replace('conceptname', self.concept_placeholder) |
|
return prompt |
|
|
|
def __getitem__(self, index): |
|
example = {} |
|
instance_path = self.all_paths[index] |
|
instance_image = load_image(instance_path) |
|
example["instance_images"] = self.image_transforms(instance_image) |
|
if self.prompt_in_filename: |
|
example["instance_prompt"] = self._path_to_prompt(instance_path) |
|
else: |
|
example["instance_prompt"] = self.instance_prompt |
|
|
|
if self.name_to_label is None: |
|
|
|
example["encoder_images"] = self.aug_transforms(example["instance_images"]) if self.aug_images else example["instance_images"] |
|
example["encoder_prompt"] = example["instance_prompt"] |
|
else: |
|
|
|
instance_name = str(instance_path.relative_to(self.instance_data_root)) |
|
instance_label = self.name_to_label[instance_name] |
|
label_set = set(self.label_to_names[instance_label]) |
|
if len(label_set) == 1: |
|
|
|
encoder_image_name = instance_name |
|
print(f'WARNING: Only one image for label {instance_label}.') |
|
else: |
|
encoder_image_name = random.choice(list(label_set - {instance_name})) |
|
encoder_image = load_image(self.instance_data_root / encoder_image_name) |
|
example["encoder_images"] = self.image_transforms(encoder_image) |
|
|
|
if self.prompt_in_filename: |
|
example["encoder_prompt"] = self._path_to_prompt(self.instance_data_root / encoder_image_name) |
|
else: |
|
example["encoder_prompt"] = self.instance_prompt |
|
|
|
if self.crop_head_for_encoder_image: |
|
example["encoder_images"] = extract_faces_and_landmarks(example["encoder_images"][None], self.size, self.mtcnn, self.resized_reference_points)[0][0] |
|
example["encoder_prompt"] = example["encoder_prompt"].format(placeholder="<ph>") |
|
example["instance_prompt"] = example["instance_prompt"].format(placeholder="<s*>") |
|
|
|
if random.random() < self.random_target_prob: |
|
random_path = random.choice(self.all_paths) |
|
|
|
random_image = load_image(random_path) |
|
example["instance_images"] = self.image_transforms(random_image) |
|
if self.prompt_in_filename: |
|
example["instance_prompt"] = self._path_to_prompt(random_path) |
|
|
|
|
|
if self.use_only_decoder_prompts: |
|
example["encoder_prompt"] = example["instance_prompt"] |
|
|
|
return example |
|
|
|
|
|
def collate_fn(examples, with_prior_preservation=False): |
|
pixel_values = [example["instance_images"] for example in examples] |
|
encoder_pixel_values = [example["encoder_images"] for example in examples] |
|
prompts = [example["instance_prompt"] for example in examples] |
|
encoder_prompts = [example["encoder_prompt"] for example in examples] |
|
|
|
if with_prior_preservation: |
|
raise NotImplementedError("Prior preservation not implemented.") |
|
|
|
pixel_values = torch.stack(pixel_values) |
|
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() |
|
|
|
encoder_pixel_values = torch.stack(encoder_pixel_values) |
|
encoder_pixel_values = encoder_pixel_values.to(memory_format=torch.contiguous_format).float() |
|
|
|
batch = {"pixel_values": pixel_values, "encoder_pixel_values": encoder_pixel_values, |
|
"prompts": prompts, "encoder_prompts": encoder_prompts} |
|
return batch |
|
|