Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
from langchain.document_loaders import HuggingFaceDatasetLoader
|
2 |
from langchain_community.document_loaders.csv_loader import CSVLoader
|
3 |
from langchain.text_splitter import RecursiveCharacterTextSplitter, CharacterTextSplitter
|
4 |
-
from
|
5 |
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
|
6 |
from transformers import AutoTokenizer, pipeline
|
7 |
from langchain import HuggingFacePipeline
|
@@ -19,9 +19,6 @@ import difflib
|
|
19 |
modelPath = "MSEAJYTHTH/NFPC"
|
20 |
# db_files = ["MSEAJYTHTH/NFPC/index.faiss", "MSEAJYTHTH/NFPC/index.pkl"]
|
21 |
|
22 |
-
index = FAISS.read_index('MSEAJYTHTH/NFPC/index.faiss')
|
23 |
-
|
24 |
-
|
25 |
model_kwargs = {'device':'cpu'}
|
26 |
|
27 |
encode_kwargs = {'normalize_embeddings': False}
|
@@ -34,7 +31,7 @@ embeddings = HuggingFaceEmbeddings(
|
|
34 |
|
35 |
|
36 |
# 두 파일을 업로드한 후에는 다음과 같이 코드를 수정할 수 있습니다.
|
37 |
-
db = FAISS.load_local(index, embeddings, allow_dangerous_deserialization=True)
|
38 |
|
39 |
|
40 |
def find_best_page_content(question, keywords, db):
|
|
|
1 |
from langchain.document_loaders import HuggingFaceDatasetLoader
|
2 |
from langchain_community.document_loaders.csv_loader import CSVLoader
|
3 |
from langchain.text_splitter import RecursiveCharacterTextSplitter, CharacterTextSplitter
|
4 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
5 |
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
|
6 |
from transformers import AutoTokenizer, pipeline
|
7 |
from langchain import HuggingFacePipeline
|
|
|
19 |
modelPath = "MSEAJYTHTH/NFPC"
|
20 |
# db_files = ["MSEAJYTHTH/NFPC/index.faiss", "MSEAJYTHTH/NFPC/index.pkl"]
|
21 |
|
|
|
|
|
|
|
22 |
model_kwargs = {'device':'cpu'}
|
23 |
|
24 |
encode_kwargs = {'normalize_embeddings': False}
|
|
|
31 |
|
32 |
|
33 |
# 두 파일을 업로드한 후에는 다음과 같이 코드를 수정할 수 있습니다.
|
34 |
+
db = FAISS.load_local("index.faiss", embeddings, allow_dangerous_deserialization=True)
|
35 |
|
36 |
|
37 |
def find_best_page_content(question, keywords, db):
|