CaGBERT / app.py
MSey's picture
Update app.py
bafdc64 verified
raw
history blame
631 Bytes
from transformers import pipeline
import streamlit as st
@st.cache_resource
def context_text(text): return f"### Context\n{text}\n\n### Answer"
@st.cache_resource
def load_pipe():
return pipeline("token-classification", model="MSey/pbt_CaBERT_7_c10731")
pipe = load_pipe()
st.header("Test Environment for pbt_CaBERT_7_c10731")
user_input = st.text_input("Enter your Prompt here:", "")
contexted_ipnut = context_text(user_input)
context_len = len(contexted_ipnut)
if user_input:
with st.spinner('Generating response...'):
response = pipe(contexted_ipnut)
st.write("Response:")
st.text(response)