import os from huggingface_hub import login from transformers import pipeline, AutoTokenizer import streamlit as st # Access the secret token from HF secrets hf_token = os.getenv("HF_MODEL_TOKEN") # Login to Hugging Face login(token=hf_token) @st.cache_resource def load_pipe(): model_name = "MSey/_table_CaBERT_0003_gbert-base_fl32_checkpoint-15852" return pipeline("token-classification", model=model_name), AutoTokenizer.from_pretrained(model_name) pipe, tokenizer = load_pipe() st.header("Test Environment for GBERT Ca Model") user_input = st.text_input("Enter your Prompt here:", "") if user_input: with st.spinner('Generating response...'): response = pipe(user_input) st.write("Response:") tuples = "" # Process each entity and highlight the labeled words for entity in response: label = entity['entity'] word = entity["word"] tuples += f"{word}\t{label}\n" # Display the highlighted text using st.markdown st.text(tuples)