|
import torch |
|
from diffusers import StableDiffusionPipeline, DDIMScheduler |
|
import gradio as gr |
|
|
|
pipe = StableDiffusionPipeline.from_pretrained("MVRL/GeoSynth") |
|
|
|
|
|
|
|
def process(prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta): |
|
generator = torch.manual_seed(seed) |
|
output_images = pipe(prompt, |
|
height=image_resolution, |
|
width=image_resolution, |
|
num_inference_steps=ddim_steps, |
|
guidance_scale=scale, |
|
negative_prompt=n_prompt, |
|
num_images_per_prompt=num_samples, |
|
eta=eta, |
|
generator=generator, |
|
).images |
|
return output_images |
|
|
|
block = gr.Blocks().queue() |
|
with block: |
|
with gr.Row(): |
|
gr.Markdown( |
|
""" |
|
# GeoSynth: Contextually-Aware High-Resolution Satellite Image Synthesis |
|
Srikumar Sastry*, Subash Khanal, Aayush Dhakal, Nathan Jacobs (*Corresponding Author)<br> |
|
""" |
|
) |
|
with gr.Row(): |
|
with gr.Column(): |
|
prompt = gr.Textbox(label="Prompt") |
|
run_button = gr.Button(value="Run") |
|
with gr.Accordion("Advanced options", open=True): |
|
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1) |
|
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=64) |
|
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1) |
|
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=7.5, step=0.1) |
|
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True) |
|
eta = gr.Number(label="eta (DDIM)", value=0.0) |
|
n_prompt = gr.Textbox(label="Negative Prompt", |
|
value='') |
|
with gr.Column(): |
|
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery") |
|
ips = [prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta] |
|
run_button.click(fn=process, inputs=ips, outputs=[result_gallery]) |
|
|
|
block.launch() |