Srikumar26 commited on
Commit
51ab545
1 Parent(s): 09cc93d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -48
app.py CHANGED
@@ -1,50 +1,3 @@
1
- import torch
2
- from diffusers import StableDiffusionPipeline, DDIMScheduler
3
  import gradio as gr
4
 
5
- pipe = StableDiffusionPipeline.from_pretrained("MVRL/GeoSynth")
6
- # scheduler = DDIMScheduler.from_pretrained("stabilityai/stable-diffusion-2-1-base")
7
- # pipe.scheduler = scheduler
8
-
9
- def process(prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta):
10
- generator = torch.manual_seed(seed)
11
- output_images = pipe(prompt,
12
- height=image_resolution,
13
- width=image_resolution,
14
- num_inference_steps=ddim_steps,
15
- guidance_scale=scale,
16
- negative_prompt=n_prompt,
17
- num_images_per_prompt=num_samples,
18
- eta=eta,
19
- generator=generator,
20
- ).images
21
- return output_images
22
-
23
- block = gr.Blocks().queue()
24
- with block:
25
- with gr.Row():
26
- gr.Markdown(
27
- """
28
- # GeoSynth: Contextually-Aware High-Resolution Satellite Image Synthesis
29
- Srikumar Sastry*, Subash Khanal, Aayush Dhakal, Nathan Jacobs (*Corresponding Author)<br>
30
- """
31
- )
32
- with gr.Row():
33
- with gr.Column():
34
- prompt = gr.Textbox(label="Prompt")
35
- run_button = gr.Button(value="Run")
36
- with gr.Accordion("Advanced options", open=True):
37
- num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
38
- image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=64)
39
- ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
40
- scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=7.5, step=0.1)
41
- seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
42
- eta = gr.Number(label="eta (DDIM)", value=0.0)
43
- n_prompt = gr.Textbox(label="Negative Prompt",
44
- value='')
45
- with gr.Column():
46
- result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery")
47
- ips = [prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta]
48
- run_button.click(fn=process, inputs=ips, outputs=[result_gallery])
49
-
50
- block.launch()
 
 
 
1
  import gradio as gr
2
 
3
+ gr.load("hysts/ControlNet-v1-1", src="models/MVRL/GeoSynth").launch()