import torch from diffusers import StableDiffusionPipeline, DDIMScheduler import gradio as gr pipe = StableDiffusionPipeline.from_pretrained("MVRL/GeoSynth") # scheduler = DDIMScheduler.from_pretrained("stabilityai/stable-diffusion-2-1-base") # pipe.scheduler = scheduler def process(prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta): generator = torch.manual_seed(seed) output_images = pipe(prompt, height=image_resolution, width=image_resolution, num_inference_steps=ddim_steps, guidance_scale=scale, negative_prompt=n_prompt, num_images_per_prompt=num_samples, eta=eta, generator=generator, ).images return output_images block = gr.Blocks().queue() with block: with gr.Row(): gr.Markdown( """ # GeoSynth: Contextually-Aware High-Resolution Satellite Image Synthesis Srikumar Sastry*, Subash Khanal, Aayush Dhakal, Nathan Jacobs (*Corresponding Author)
""" ) with gr.Row(): with gr.Column(): prompt = gr.Textbox(label="Prompt") run_button = gr.Button(value="Run") with gr.Accordion("Advanced options", open=True): num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1) image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=64) ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1) scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=7.5, step=0.1) seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True) eta = gr.Number(label="eta (DDIM)", value=0.0) n_prompt = gr.Textbox(label="Negative Prompt", value='') with gr.Column(): result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery") ips = [prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta] run_button.click(fn=process, inputs=ips, outputs=[result_gallery]) block.launch()