Spaces:
Sleeping
Sleeping
Upload model.ipynb
Browse files- train/model.ipynb +667 -0
train/model.ipynb
ADDED
@@ -0,0 +1,667 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "dd07a8e6-5809-4bb7-ba3a-bd6c15b22ff2",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [
|
9 |
+
{
|
10 |
+
"name": "stderr",
|
11 |
+
"output_type": "stream",
|
12 |
+
"text": [
|
13 |
+
"/home/user/conda/envs/senv/lib/python3.9/site-packages/tqdm/auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
14 |
+
" from .autonotebook import tqdm as notebook_tqdm\n"
|
15 |
+
]
|
16 |
+
}
|
17 |
+
],
|
18 |
+
"source": [
|
19 |
+
"import random\n",
|
20 |
+
"from statistics import mean\n",
|
21 |
+
"from datetime import datetime\n",
|
22 |
+
"from typing import List, Tuple\n",
|
23 |
+
"import copy\n",
|
24 |
+
"\n",
|
25 |
+
"import torch as th\n",
|
26 |
+
"import pytorch_lightning as pl\n",
|
27 |
+
"from pytorch_lightning.callbacks import ModelCheckpoint\n",
|
28 |
+
"from jaxtyping import Float, Float16, Int\n",
|
29 |
+
"\n",
|
30 |
+
"import trimesh as tm\n",
|
31 |
+
"import numpy as np\n",
|
32 |
+
"import numba\n",
|
33 |
+
"\n",
|
34 |
+
"from torch_geometric.nn.conv import GATv2Conv\n",
|
35 |
+
"\n",
|
36 |
+
"import h5py\n",
|
37 |
+
"\n",
|
38 |
+
"# Clone SAP from original repo https://github.com/autonomousvision/shape_as_points.git\n",
|
39 |
+
"from SAP.dpsr import DPSR\n",
|
40 |
+
"from SAP.model import PSR2Mesh"
|
41 |
+
]
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"cell_type": "markdown",
|
45 |
+
"id": "59c87491-5650-4c59-8d33-5153d29fb1a9",
|
46 |
+
"metadata": {
|
47 |
+
"tags": []
|
48 |
+
},
|
49 |
+
"source": [
|
50 |
+
"# Constants"
|
51 |
+
]
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"cell_type": "code",
|
55 |
+
"execution_count": 2,
|
56 |
+
"id": "26d62fb9-dae9-406b-ba30-3fec1a43a29a",
|
57 |
+
"metadata": {
|
58 |
+
"tags": []
|
59 |
+
},
|
60 |
+
"outputs": [],
|
61 |
+
"source": [
|
62 |
+
"th.manual_seed(0)\n",
|
63 |
+
"np.random.seed(0)"
|
64 |
+
]
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"cell_type": "code",
|
68 |
+
"execution_count": 3,
|
69 |
+
"id": "9ab9502f-e822-4475-9c90-019ff28f12d0",
|
70 |
+
"metadata": {},
|
71 |
+
"outputs": [],
|
72 |
+
"source": [
|
73 |
+
"IS_DEBUG = True"
|
74 |
+
]
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"cell_type": "code",
|
78 |
+
"execution_count": 4,
|
79 |
+
"id": "7095231b-e8ed-4c4d-997f-8f58664e9877",
|
80 |
+
"metadata": {},
|
81 |
+
"outputs": [],
|
82 |
+
"source": [
|
83 |
+
"BATCH_SIZE = 1 # BS\n",
|
84 |
+
"LR = 0.001\n",
|
85 |
+
"\n",
|
86 |
+
"IN_DIM = 1 \n",
|
87 |
+
"OUT_DIM = 1\n",
|
88 |
+
"LATENT_DIM = 32\n",
|
89 |
+
"\n",
|
90 |
+
"DROPOUT_PROB = 0.1\n",
|
91 |
+
"\n",
|
92 |
+
"PADDING = 1.2 # Scaling\n",
|
93 |
+
"\n",
|
94 |
+
"GRID_SIZE = 128\n",
|
95 |
+
"SIGMA = 5.0"
|
96 |
+
]
|
97 |
+
},
|
98 |
+
{
|
99 |
+
"cell_type": "code",
|
100 |
+
"execution_count": 5,
|
101 |
+
"id": "27b7a406-cbb0-4a36-be1e-a8d8aa82c702",
|
102 |
+
"metadata": {
|
103 |
+
"tags": []
|
104 |
+
},
|
105 |
+
"outputs": [],
|
106 |
+
"source": [
|
107 |
+
"DATASET = \"Synthetic\"\n",
|
108 |
+
"LOG_IDX = 14\n",
|
109 |
+
"LOG_VISUALS = not IS_DEBUG\n",
|
110 |
+
"\n",
|
111 |
+
"CHECKPOINTS_PATH = \"./checkpoints/\"\n",
|
112 |
+
"\n",
|
113 |
+
"FIELDS_H5_PATH = f\"./Standart_fields/{DATASET}_fields_32_512.h5\"\n",
|
114 |
+
"PATH_ORIG_H5 = f\"./Standart_h5/{DATASET}.h5\"\n",
|
115 |
+
"PATH_NOISY_H5 = f\"./Standart_h5/{DATASET}_noisy.h5\"\n",
|
116 |
+
"MIN_V_NUMBER = 1_000\n",
|
117 |
+
"MAX_V_NUMBER = 100_000"
|
118 |
+
]
|
119 |
+
},
|
120 |
+
{
|
121 |
+
"cell_type": "markdown",
|
122 |
+
"id": "1690b667-0af4-465a-8e3c-4a29622e9e66",
|
123 |
+
"metadata": {
|
124 |
+
"tags": []
|
125 |
+
},
|
126 |
+
"source": [
|
127 |
+
"# Data Preparation"
|
128 |
+
]
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"cell_type": "code",
|
132 |
+
"execution_count": 6,
|
133 |
+
"id": "2e774809-1293-4f80-8350-59ae7fc86cbb",
|
134 |
+
"metadata": {},
|
135 |
+
"outputs": [],
|
136 |
+
"source": [
|
137 |
+
"@numba.njit\n",
|
138 |
+
"def generate_grid_edge_list(gs: int = 128):\n",
|
139 |
+
" grid_edge_list = []\n",
|
140 |
+
"\n",
|
141 |
+
" for k in range(gs):\n",
|
142 |
+
" for j in range(gs):\n",
|
143 |
+
" for i in range(gs):\n",
|
144 |
+
" current_idx = i + gs*j + k*gs*gs\n",
|
145 |
+
" if (i - 1) >= 0:\n",
|
146 |
+
" grid_edge_list.append([current_idx, i-1 + gs*j + k*gs*gs])\n",
|
147 |
+
" if (i + 1) < gs:\n",
|
148 |
+
" grid_edge_list.append([current_idx, i+1 + gs*j + k*gs*gs])\n",
|
149 |
+
" if (j - 1) >= 0:\n",
|
150 |
+
" grid_edge_list.append([current_idx, i + gs*(j-1) + k*gs*gs])\n",
|
151 |
+
" if (j + 1) < gs:\n",
|
152 |
+
" grid_edge_list.append([current_idx, i + gs*(j+1) + k*gs*gs])\n",
|
153 |
+
" if (k - 1) >= 0:\n",
|
154 |
+
" grid_edge_list.append([current_idx, i + gs*j + (k-1)*gs*gs])\n",
|
155 |
+
" if (k + 1) < gs:\n",
|
156 |
+
" grid_edge_list.append([current_idx, i + gs*j + (k+1)*gs*gs])\n",
|
157 |
+
" return grid_edge_list\n",
|
158 |
+
"\n",
|
159 |
+
"GRID_EDGE_LIST = None"
|
160 |
+
]
|
161 |
+
},
|
162 |
+
{
|
163 |
+
"cell_type": "code",
|
164 |
+
"execution_count": 7,
|
165 |
+
"id": "4486968b-3416-41c5-9ecd-429f7cf193de",
|
166 |
+
"metadata": {},
|
167 |
+
"outputs": [],
|
168 |
+
"source": [
|
169 |
+
"class StandartH5DataSet(th.utils.data.Dataset):\n",
|
170 |
+
" \n",
|
171 |
+
" def _load_data(self, key: str):\n",
|
172 |
+
" key_orig = key.replace(\"_n1\", \"\")\n",
|
173 |
+
" key_orig = key_orig.replace(\"_n2\", \"\")\n",
|
174 |
+
" key_orig = key_orig.replace(\"_n3\", \"\")\n",
|
175 |
+
" key_orig = key_orig.replace(\"_noisy\", \"\")\n",
|
176 |
+
"\n",
|
177 |
+
" vertices = th.tensor(self._noisy_meshes_h5[key][\"vertices\"][:], dtype=th.float)\n",
|
178 |
+
" vertices_normals = th.tensor(self._noisy_meshes_h5[key][\"vertices_normals\"][:], dtype=th.float)\n",
|
179 |
+
" vertices_gt = th.tensor(self._orig_meshes_h5[key_orig][\"vertices\"][:], dtype=th.float)\n",
|
180 |
+
" vertices_normals_gt = th.tensor(self._orig_meshes_h5[key_orig][\"vertices_normals\"][:], dtype=th.float)\n",
|
181 |
+
" field_gt = self.dpsr(vertices_gt.unsqueeze(0), vertices_normals_gt.unsqueeze(0)).squeeze(0)\n",
|
182 |
+
"\n",
|
183 |
+
" adj = np.array(self._noisy_meshes_h5[key][\"edge_index\"][:], dtype=np.int64)\n",
|
184 |
+
" adj = th.tensor(adj, dtype=th.int64)\n",
|
185 |
+
" \n",
|
186 |
+
" return vertices, vertices_normals, vertices_gt, vertices_normals_gt, field_gt, adj\n",
|
187 |
+
" \n",
|
188 |
+
" def __init__(self, \n",
|
189 |
+
" orig_meshes_h5: h5py.Group,\n",
|
190 |
+
" noisy_meshes_h5: h5py.Group,\n",
|
191 |
+
" fields_grid_size: int,\n",
|
192 |
+
" min_verts: int,\n",
|
193 |
+
" max_verts: int) -> None:\n",
|
194 |
+
" super().__init__()\n",
|
195 |
+
" \n",
|
196 |
+
" self.dpsr = DPSR([GRID_SIZE, GRID_SIZE, GRID_SIZE], sig=SIGMA)\n",
|
197 |
+
" \n",
|
198 |
+
" self._orig_meshes_h5 = orig_meshes_h5\n",
|
199 |
+
" self._noisy_meshes_h5 = noisy_meshes_h5\n",
|
200 |
+
" \n",
|
201 |
+
" self._fields_grid_size = str(fields_grid_size)\n",
|
202 |
+
" self._min_verts = min_verts\n",
|
203 |
+
" self._max_verts = max_verts\n",
|
204 |
+
" \n",
|
205 |
+
" self._data = {}\n",
|
206 |
+
" self._keys = []\n",
|
207 |
+
" \n",
|
208 |
+
" # filter keys to load only meshes with requested amount of vertices\n",
|
209 |
+
" for key in self._noisy_meshes_h5.keys():\n",
|
210 |
+
" v_number = self._noisy_meshes_h5[key][\"vertices\"].shape[0]\n",
|
211 |
+
" if (v_number >= self._min_verts) and (v_number <= self._max_verts):\n",
|
212 |
+
" self._keys.append(key)\n",
|
213 |
+
" self._keys = np.array(self._keys, dtype=str)\n",
|
214 |
+
" self._loaded = np.full(shape=self._keys.shape, fill_value=False, dtype=bool)\n",
|
215 |
+
" \n",
|
216 |
+
" def __len__(self) -> int:\n",
|
217 |
+
" return self._keys.shape[0]\n",
|
218 |
+
" \n",
|
219 |
+
" def __getitem__(self, index: int) -> Tuple[Float[th.Tensor, \"N 3\"],\n",
|
220 |
+
" Float[th.Tensor, \"N 3\"],\n",
|
221 |
+
" Float[th.Tensor, \"N 3\"],\n",
|
222 |
+
" Float[th.Tensor, \"N 3\"],\n",
|
223 |
+
" Float[th.Tensor, \"GR GR GR\"],\n",
|
224 |
+
" Float[th.Tensor, \"2 E\"]]:\n",
|
225 |
+
" if self._loaded[index] == False:\n",
|
226 |
+
" data = self._load_data(self._keys[index])\n",
|
227 |
+
" self._data[index] = data\n",
|
228 |
+
" self._loaded[index] = True\n",
|
229 |
+
" return copy.deepcopy(self._data[index])\n",
|
230 |
+
" \n",
|
231 |
+
" @property\n",
|
232 |
+
" def fields_grid_size(self):\n",
|
233 |
+
" return int(self._fields_grid_size)\n",
|
234 |
+
" \n",
|
235 |
+
" def renew_grid_size(self, new_grid_size: int):\n",
|
236 |
+
" self._fields_grid_size = str(new_grid_size)\n",
|
237 |
+
" self._loaded = np.full(shape=self._keys.shape, fill_value=False, dtype=bool)"
|
238 |
+
]
|
239 |
+
},
|
240 |
+
{
|
241 |
+
"cell_type": "markdown",
|
242 |
+
"id": "13c69a49-5107-4d3e-9b14-1d456768f128",
|
243 |
+
"metadata": {
|
244 |
+
"tags": []
|
245 |
+
},
|
246 |
+
"source": [
|
247 |
+
"# Model"
|
248 |
+
]
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"cell_type": "markdown",
|
252 |
+
"id": "1d9a9aac-d229-489a-844d-a1d1cbd34c56",
|
253 |
+
"metadata": {
|
254 |
+
"tags": []
|
255 |
+
},
|
256 |
+
"source": [
|
257 |
+
"### Form Optimizer "
|
258 |
+
]
|
259 |
+
},
|
260 |
+
{
|
261 |
+
"cell_type": "code",
|
262 |
+
"execution_count": 8,
|
263 |
+
"id": "940babdc-3e4f-4310-8bfd-48b23d0758dc",
|
264 |
+
"metadata": {
|
265 |
+
"tags": []
|
266 |
+
},
|
267 |
+
"outputs": [],
|
268 |
+
"source": [
|
269 |
+
"class FormOptimizer(th.nn.Module):\n",
|
270 |
+
" def __init__(self) -> None:\n",
|
271 |
+
" super().__init__()\n",
|
272 |
+
" \n",
|
273 |
+
" layers = []\n",
|
274 |
+
" \n",
|
275 |
+
" self.gconv1 = GATv2Conv(in_channels=IN_DIM, out_channels=LATENT_DIM, heads=1, dropout=DROPOUT_PROB)\n",
|
276 |
+
" self.gconv2 = GATv2Conv(in_channels=LATENT_DIM, out_channels=LATENT_DIM, heads=1, dropout=DROPOUT_PROB)\n",
|
277 |
+
" \n",
|
278 |
+
" self.actv = th.nn.Sigmoid()\n",
|
279 |
+
" self.head = th.nn.Linear(in_features=LATENT_DIM, out_features=OUT_DIM)\n",
|
280 |
+
"\n",
|
281 |
+
" def forward(self, \n",
|
282 |
+
" field: Float[th.Tensor, \"GS GS GS\"]) -> Float[th.Tensor, \"GS GS GS\"]:\n",
|
283 |
+
" \"\"\"\n",
|
284 |
+
" Args:\n",
|
285 |
+
" field (Tensor [GS, GS, GS]): vertices and normals tensor.\n",
|
286 |
+
" \"\"\"\n",
|
287 |
+
" vertex_features = field.clone()\n",
|
288 |
+
" vertex_features = vertex_features.reshape(GRID_SIZE*GRID_SIZE*GRID_SIZE, IN_DIM)\n",
|
289 |
+
" \n",
|
290 |
+
" vertex_features = self.gconv1(x=vertex_features, edge_index=GRID_EDGE_LIST) \n",
|
291 |
+
" vertex_features = self.gconv2(x=vertex_features, edge_index=GRID_EDGE_LIST) \n",
|
292 |
+
" field_delta = self.head(self.actv(vertex_features))\n",
|
293 |
+
" \n",
|
294 |
+
" field_delta = field_delta.reshape(BATCH_SIZE, GRID_SIZE, GRID_SIZE, GRID_SIZE)\n",
|
295 |
+
" field_delta += field \n",
|
296 |
+
" field_delta = th.clamp(field_delta, min=-0.5, max=0.5)\n",
|
297 |
+
" \n",
|
298 |
+
" return field_delta"
|
299 |
+
]
|
300 |
+
},
|
301 |
+
{
|
302 |
+
"cell_type": "markdown",
|
303 |
+
"id": "67b40c5b-ff1b-416d-b892-c544386eaa95",
|
304 |
+
"metadata": {
|
305 |
+
"toc-hr-collapsed": true
|
306 |
+
},
|
307 |
+
"source": [
|
308 |
+
"### Full"
|
309 |
+
]
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"cell_type": "code",
|
313 |
+
"execution_count": 9,
|
314 |
+
"id": "bce3aa63-9bd7-4ac8-939d-395d63dd3cad",
|
315 |
+
"metadata": {
|
316 |
+
"scrolled": true,
|
317 |
+
"tags": []
|
318 |
+
},
|
319 |
+
"outputs": [],
|
320 |
+
"source": [
|
321 |
+
"class Model(pl.LightningModule):\n",
|
322 |
+
" def __init__(self):\n",
|
323 |
+
" super().__init__()\n",
|
324 |
+
" self.form_optimizer = FormOptimizer()\n",
|
325 |
+
" \n",
|
326 |
+
" self.dpsr = DPSR([GRID_SIZE, GRID_SIZE, GRID_SIZE], sig=SIGMA)\n",
|
327 |
+
" self.field2mesh = PSR2Mesh().apply\n",
|
328 |
+
"\n",
|
329 |
+
" self.metric = th.nn.MSELoss()\n",
|
330 |
+
"\n",
|
331 |
+
" #video logging databases\n",
|
332 |
+
" dateTimeObj = datetime.now()\n",
|
333 |
+
" start_time = dateTimeObj.strftime(\"%d-%b-%Y_%H-%M-%S\")\n",
|
334 |
+
" \n",
|
335 |
+
" if LOG_VISUALS:\n",
|
336 |
+
" self.h5_frame = 0\n",
|
337 |
+
" self.log_points_file = h5py.File(f\"./logs/points_{start_time}\", \"w\")\n",
|
338 |
+
" self.log_normals_file = h5py.File(f\"./logs/normals_{start_time}\", \"w\")\n",
|
339 |
+
" \n",
|
340 |
+
" self.val_losses = []\n",
|
341 |
+
" self.train_losses = []\n",
|
342 |
+
"\n",
|
343 |
+
" def log_h5(self, points, normals):\n",
|
344 |
+
" dset = self.log_points_file.create_dataset(\n",
|
345 |
+
" name=str(self.h5_frame),\n",
|
346 |
+
" shape=points.shape,\n",
|
347 |
+
" dtype=np.float16, \n",
|
348 |
+
" compression=\"gzip\")\n",
|
349 |
+
" dset[:] = points\n",
|
350 |
+
" dset = self.log_normals_file.create_dataset(\n",
|
351 |
+
" name=str(self.h5_frame),\n",
|
352 |
+
" shape=normals.shape,\n",
|
353 |
+
" dtype=np.float16, \n",
|
354 |
+
" compression=\"gzip\")\n",
|
355 |
+
" dset[:] = normals\n",
|
356 |
+
" self.h5_frame += 1\n",
|
357 |
+
" \n",
|
358 |
+
" def forward(self, \n",
|
359 |
+
" v: Float[th.Tensor, \"BS N 3\"],\n",
|
360 |
+
" n: Float[th.Tensor, \"BS N 3\"]) -> Tuple[Float[th.Tensor, \"BS N 3\"], # v - vertices\n",
|
361 |
+
" Int[th.Tensor, \"2 E\"], # f - faces\n",
|
362 |
+
" Float[th.Tensor, \"BS N 3\"], # n - vertices normals\n",
|
363 |
+
" Float[th.Tensor, \"BS GR GR GR\"]]: # field: \n",
|
364 |
+
" field = self.dpsr(v, n)\n",
|
365 |
+
" field = self.form_optimizer(field)\n",
|
366 |
+
" v, f, n = self.field2mesh(field)\n",
|
367 |
+
" return v, f, n, field\n",
|
368 |
+
"\n",
|
369 |
+
" def training_step(self, batch, batch_idx) -> Float[th.Tensor, \"1\"]:\n",
|
370 |
+
" vertices, vertices_normals, vertices_gt, vertices_normals_gt, field_gt, adj = batch\n",
|
371 |
+
" \n",
|
372 |
+
" mask = th.rand((vertices.shape[1], ), device=th.device(\"cuda\")) < (random.random() / 2.0 + 0.5)\n",
|
373 |
+
" vertices = vertices[:, mask]\n",
|
374 |
+
" vertices_normals = vertices_normals[:, mask]\n",
|
375 |
+
" \n",
|
376 |
+
" vr, fr, nr, field_r = model(vertices, vertices_normals)\n",
|
377 |
+
" \n",
|
378 |
+
" loss = self.metric(field_r, field_gt)\n",
|
379 |
+
" if LOG_VISUALS and (LOG_IDX == batch_idx):\n",
|
380 |
+
" self.log_h5(vr.squeeze(0).detach().cpu().numpy(), nr.squeeze(0).detach().cpu().numpy())\n",
|
381 |
+
" train_per_step_loss = loss.item()\n",
|
382 |
+
" self.train_losses.append(train_per_step_loss)\n",
|
383 |
+
" \n",
|
384 |
+
" return loss\n",
|
385 |
+
" \n",
|
386 |
+
" def on_train_epoch_end(self):\n",
|
387 |
+
" mean_train_per_epoch_loss = mean(self.train_losses)\n",
|
388 |
+
" self.log(\"mean_train_per_epoch_loss\", mean_train_per_epoch_loss, on_step=False, on_epoch=True)\n",
|
389 |
+
" self.train_losses = []\n",
|
390 |
+
" \n",
|
391 |
+
" def validation_step(self, batch, batch_idx):\n",
|
392 |
+
" vertices, vertices_normals, vertices_gt, vertices_normals_gt, field_gt, adj = batch\n",
|
393 |
+
" \n",
|
394 |
+
" vr, fr, nr, field_r = model(vertices, vertices_normals)\n",
|
395 |
+
" \n",
|
396 |
+
" loss = self.metric(field_r, field_gt)\n",
|
397 |
+
" val_per_step_loss = loss.item()\n",
|
398 |
+
" self.val_losses.append(val_per_step_loss)\n",
|
399 |
+
" return loss\n",
|
400 |
+
" \n",
|
401 |
+
" def on_validation_epoch_end(self):\n",
|
402 |
+
" mean_val_per_epoch_loss = mean(self.val_losses)\n",
|
403 |
+
" self.log(\"mean_val_per_epoch_loss\", mean_val_per_epoch_loss, on_step=False, on_epoch=True)\n",
|
404 |
+
" self.val_losses = []\n",
|
405 |
+
"\n",
|
406 |
+
" def configure_optimizers(self):\n",
|
407 |
+
" optimizer = th.optim.Adam(self.parameters(), lr=LR)\n",
|
408 |
+
" scheduler = th.optim.lr_scheduler.ReduceLROnPlateau(optimizer, patience=5, factor=0.5)\n",
|
409 |
+
" \n",
|
410 |
+
" return {\n",
|
411 |
+
" \"optimizer\": optimizer,\n",
|
412 |
+
" \"lr_scheduler\": {\n",
|
413 |
+
" \"scheduler\": scheduler, \n",
|
414 |
+
" \"monitor\": \"mean_val_per_epoch_loss\",\n",
|
415 |
+
" \"interval\": \"epoch\",\n",
|
416 |
+
" \"frequency\": 1,\n",
|
417 |
+
" \"strict\": True,\n",
|
418 |
+
" \"name\": None,\n",
|
419 |
+
" }\n",
|
420 |
+
" }\n"
|
421 |
+
]
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"cell_type": "markdown",
|
425 |
+
"id": "1fb2c5a5-43ee-4a4e-be08-0dcfcb6816de",
|
426 |
+
"metadata": {
|
427 |
+
"tags": []
|
428 |
+
},
|
429 |
+
"source": [
|
430 |
+
"# Loop"
|
431 |
+
]
|
432 |
+
},
|
433 |
+
{
|
434 |
+
"cell_type": "code",
|
435 |
+
"execution_count": 10,
|
436 |
+
"id": "c94c6a68-3986-48af-9da5-cab8c02a8b7b",
|
437 |
+
"metadata": {},
|
438 |
+
"outputs": [],
|
439 |
+
"source": [
|
440 |
+
"checkpoint_callback = ModelCheckpoint(\n",
|
441 |
+
" monitor='mean_val_per_epoch_loss', # monitor the validation loss\n",
|
442 |
+
" mode='min', # mode 'min' to save the lowest monitored value\n",
|
443 |
+
" save_top_k=1, # save only the best checkpoint (top 1)\n",
|
444 |
+
")"
|
445 |
+
]
|
446 |
+
},
|
447 |
+
{
|
448 |
+
"cell_type": "code",
|
449 |
+
"execution_count": 11,
|
450 |
+
"id": "03cdddbc-223e-4d40-9fb0-e663beddefda",
|
451 |
+
"metadata": {},
|
452 |
+
"outputs": [
|
453 |
+
{
|
454 |
+
"name": "stderr",
|
455 |
+
"output_type": "stream",
|
456 |
+
"text": [
|
457 |
+
"/home/user/conda/envs/senv/lib/python3.9/site-packages/torch/functional.py:504: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at /opt/conda/conda-bld/pytorch_1670525551200/work/aten/src/ATen/native/TensorShape.cpp:3190.)\n",
|
458 |
+
" return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined]\n",
|
459 |
+
"/home/user/conda/envs/senv/lib/python3.9/site-packages/lightning_fabric/connector.py:554: UserWarning: 16 is supported for historical reasons but its usage is discouraged. Please set your precision to 16-mixed instead!\n",
|
460 |
+
" rank_zero_warn(\n",
|
461 |
+
"Using 16bit Automatic Mixed Precision (AMP)\n",
|
462 |
+
"GPU available: True (cuda), used: True\n",
|
463 |
+
"TPU available: False, using: 0 TPU cores\n",
|
464 |
+
"IPU available: False, using: 0 IPUs\n",
|
465 |
+
"HPU available: False, using: 0 HPUs\n",
|
466 |
+
"Running in `fast_dev_run` mode: will run the requested loop using 300 batch(es). Logging and checkpointing is suppressed.\n",
|
467 |
+
"You are using a CUDA device ('A100-PCIE-40GB') that has Tensor Cores. To properly utilize them, you should set `torch.set_float32_matmul_precision('medium' | 'high')` which will trade-off precision for performance. For more details, read https://pytorch.org/docs/stable/generated/torch.set_float32_matmul_precision.html#torch.set_float32_matmul_precision\n",
|
468 |
+
"/home/user/conda/envs/senv/lib/python3.9/site-packages/pytorch_lightning/callbacks/model_checkpoint.py:617: UserWarning: Checkpoint directory /home/jovyan/Mashurov/GINSAP/checkpoints exists and is not empty.\n",
|
469 |
+
" rank_zero_warn(f\"Checkpoint directory {dirpath} exists and is not empty.\")\n",
|
470 |
+
"LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n",
|
471 |
+
"\n",
|
472 |
+
" | Name | Type | Params\n",
|
473 |
+
"-------------------------------------------------\n",
|
474 |
+
"0 | form_optimizer | FormOptimizer | 2.4 K \n",
|
475 |
+
"1 | dpsr | DPSR | 0 \n",
|
476 |
+
"2 | metric | MSELoss | 0 \n",
|
477 |
+
"-------------------------------------------------\n",
|
478 |
+
"2.4 K Trainable params\n",
|
479 |
+
"0 Non-trainable params\n",
|
480 |
+
"2.4 K Total params\n",
|
481 |
+
"0.010 Total estimated model params size (MB)\n",
|
482 |
+
"/home/user/conda/envs/senv/lib/python3.9/site-packages/pytorch_lightning/trainer/connectors/data_connector.py:442: PossibleUserWarning: The dataloader, train_dataloader, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 64 which is the number of cpus on this machine) in the `DataLoader` init to improve performance.\n",
|
483 |
+
" rank_zero_warn(\n",
|
484 |
+
"/home/user/conda/envs/senv/lib/python3.9/site-packages/pytorch_lightning/trainer/connectors/data_connector.py:442: PossibleUserWarning: The dataloader, val_dataloader, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 64 which is the number of cpus on this machine) in the `DataLoader` init to improve performance.\n",
|
485 |
+
" rank_zero_warn(\n"
|
486 |
+
]
|
487 |
+
},
|
488 |
+
{
|
489 |
+
"name": "stdout",
|
490 |
+
"output_type": "stream",
|
491 |
+
"text": [
|
492 |
+
"Epoch 0: 100%|ββββββββββ| 60/60 [00:17<00:00, 3.52it/s]\n",
|
493 |
+
"Validation: 0it [00:00, ?it/s]\u001b[A\n",
|
494 |
+
"Validation: 0%| | 0/84 [00:00<?, ?it/s]\u001b[A\n",
|
495 |
+
"Validation DataLoader 0: 0%| | 0/84 [00:00<?, ?it/s]\u001b[A\n",
|
496 |
+
"Validation DataLoader 0: 1%| | 1/84 [00:00<00:09, 8.99it/s]\u001b[A\n",
|
497 |
+
"Validation DataLoader 0: 2%|β | 2/84 [00:00<00:10, 7.88it/s]\u001b[A\n",
|
498 |
+
"Validation DataLoader 0: 4%|β | 3/84 [00:00<00:10, 7.47it/s]\u001b[A\n",
|
499 |
+
"Validation DataLoader 0: 5%|β | 4/84 [00:00<00:11, 7.22it/s]\u001b[A\n",
|
500 |
+
"Validation DataLoader 0: 6%|β | 5/84 [00:00<00:11, 7.13it/s]\u001b[A\n",
|
501 |
+
"Validation DataLoader 0: 7%|β | 6/84 [00:00<00:10, 7.09it/s]\u001b[A\n",
|
502 |
+
"Validation DataLoader 0: 8%|β | 7/84 [00:01<00:11, 6.95it/s]\u001b[A\n",
|
503 |
+
"Validation DataLoader 0: 10%|β | 8/84 [00:01<00:11, 6.86it/s]\u001b[A\n",
|
504 |
+
"Validation DataLoader 0: 11%|β | 9/84 [00:01<00:11, 6.81it/s]\u001b[A\n",
|
505 |
+
"Validation DataLoader 0: 12%|ββ | 10/84 [00:01<00:11, 6.71it/s]\u001b[A\n",
|
506 |
+
"Validation DataLoader 0: 13%|ββ | 11/84 [00:01<00:10, 6.64it/s]\u001b[A\n",
|
507 |
+
"Validation DataLoader 0: 14%|ββ | 12/84 [00:01<00:10, 6.60it/s]\u001b[A\n",
|
508 |
+
"Validation DataLoader 0: 15%|ββ | 13/84 [00:01<00:10, 6.53it/s]\u001b[A\n",
|
509 |
+
"Validation DataLoader 0: 17%|ββ | 14/84 [00:02<00:10, 6.48it/s]\u001b[A\n",
|
510 |
+
"Validation DataLoader 0: 18%|ββ | 15/84 [00:02<00:10, 6.44it/s]\u001b[A\n",
|
511 |
+
"Validation DataLoader 0: 19%|ββ | 16/84 [00:02<00:10, 6.34it/s]\u001b[A\n",
|
512 |
+
"Validation DataLoader 0: 20%|ββ | 17/84 [00:02<00:10, 6.27it/s]\u001b[A\n",
|
513 |
+
"Validation DataLoader 0: 21%|βββ | 18/84 [00:02<00:10, 6.20it/s]\u001b[A\n",
|
514 |
+
"Validation DataLoader 0: 23%|βββ | 19/84 [00:03<00:10, 6.16it/s]\u001b[A\n",
|
515 |
+
"Validation DataLoader 0: 24%|βββ | 20/84 [00:03<00:10, 6.16it/s]\u001b[A\n",
|
516 |
+
"Validation DataLoader 0: 25%|βββ | 21/84 [00:03<00:10, 6.16it/s]\u001b[A\n",
|
517 |
+
"Validation DataLoader 0: 26%|βββ | 22/84 [00:03<00:10, 6.16it/s]\u001b[A\n",
|
518 |
+
"Validation DataLoader 0: 27%|βββ | 23/84 [00:03<00:09, 6.17it/s]\u001b[A\n",
|
519 |
+
"Validation DataLoader 0: 29%|βββ | 24/84 [00:03<00:09, 6.18it/s]\u001b[A\n",
|
520 |
+
"Validation DataLoader 0: 30%|βββ | 25/84 [00:04<00:09, 6.20it/s]\u001b[A\n",
|
521 |
+
"Validation DataLoader 0: 31%|βββ | 26/84 [00:04<00:09, 6.22it/s]\u001b[A\n",
|
522 |
+
"Validation DataLoader 0: 32%|ββββ | 27/84 [00:04<00:09, 6.25it/s]\u001b[A\n",
|
523 |
+
"Validation DataLoader 0: 33%|ββββ | 28/84 [00:04<00:08, 6.22it/s]\u001b[A\n",
|
524 |
+
"Validation DataLoader 0: 35%|ββββ | 29/84 [00:04<00:08, 6.20it/s]\u001b[A\n",
|
525 |
+
"Validation DataLoader 0: 36%|ββββ | 30/84 [00:04<00:08, 6.19it/s]\u001b[A\n",
|
526 |
+
"Validation DataLoader 0: 37%|ββββ | 31/84 [00:04<00:08, 6.21it/s]\u001b[A\n",
|
527 |
+
"Validation DataLoader 0: 38%|ββββ | 32/84 [00:05<00:08, 6.23it/s]\u001b[A\n",
|
528 |
+
"Validation DataLoader 0: 39%|ββββ | 33/84 [00:05<00:08, 6.25it/s]\u001b[A\n",
|
529 |
+
"Validation DataLoader 0: 40%|ββββ | 34/84 [00:05<00:08, 6.17it/s]\u001b[A\n",
|
530 |
+
"Validation DataLoader 0: 42%|βββββ | 35/84 [00:05<00:08, 6.12it/s]\u001b[A\n",
|
531 |
+
"Validation DataLoader 0: 43%|βββββ | 36/84 [00:05<00:07, 6.07it/s]\u001b[A\n",
|
532 |
+
"Validation DataLoader 0: 44%|βββββ | 37/84 [00:06<00:07, 6.08it/s]\u001b[A\n",
|
533 |
+
"Validation DataLoader 0: 45%|βββββ | 38/84 [00:06<00:07, 6.10it/s]\u001b[A\n",
|
534 |
+
"Validation DataLoader 0: 46%|βββββ | 39/84 [00:06<00:07, 6.11it/s]\u001b[A\n",
|
535 |
+
"Validation DataLoader 0: 48%|βββββ | 40/84 [00:06<00:07, 6.11it/s]\u001b[A\n",
|
536 |
+
"Validation DataLoader 0: 49%|βββββ | 41/84 [00:06<00:07, 6.11it/s]\u001b[A\n",
|
537 |
+
"Validation DataLoader 0: 50%|βββββ | 42/84 [00:06<00:06, 6.11it/s]\u001b[A\n",
|
538 |
+
"Validation DataLoader 0: 51%|βββββ | 43/84 [00:07<00:06, 6.11it/s]\u001b[A\n",
|
539 |
+
"Validation DataLoader 0: 52%|ββββββ | 44/84 [00:07<00:06, 6.10it/s]\u001b[A\n",
|
540 |
+
"Validation DataLoader 0: 54%|ββββββ | 45/84 [00:07<00:06, 6.07it/s]\u001b[A\n",
|
541 |
+
"Validation DataLoader 0: 55%|ββββββ | 46/84 [00:07<00:06, 6.06it/s]\u001b[A\n",
|
542 |
+
"Validation DataLoader 0: 56%|ββββββ | 47/84 [00:07<00:06, 6.05it/s]\u001b[A\n",
|
543 |
+
"Validation DataLoader 0: 57%|ββββββ | 48/84 [00:07<00:05, 6.06it/s]\u001b[A\n",
|
544 |
+
"Validation DataLoader 0: 58%|ββββββ | 49/84 [00:08<00:05, 6.04it/s]\u001b[A\n",
|
545 |
+
"Validation DataLoader 0: 60%|ββββββ | 50/84 [00:08<00:05, 6.02it/s]\u001b[A\n",
|
546 |
+
"Validation DataLoader 0: 61%|ββββββ | 51/84 [00:08<00:05, 6.01it/s]\u001b[A\n",
|
547 |
+
"Validation DataLoader 0: 62%|βββββββ | 52/84 [00:08<00:05, 6.03it/s]\u001b[A\n",
|
548 |
+
"Validation DataLoader 0: 63%|βββββββ | 53/84 [00:08<00:05, 6.05it/s]\u001b[A\n",
|
549 |
+
"Validation DataLoader 0: 64%|βββββββ | 54/84 [00:08<00:04, 6.07it/s]\u001b[A\n",
|
550 |
+
"Validation DataLoader 0: 65%|βββββββ | 55/84 [00:09<00:04, 6.07it/s]\u001b[A\n",
|
551 |
+
"Validation DataLoader 0: 67%|βββββββ | 56/84 [00:09<00:04, 6.07it/s]\u001b[A\n",
|
552 |
+
"Validation DataLoader 0: 68%|βββββββ | 57/84 [00:09<00:04, 6.07it/s]\u001b[A\n",
|
553 |
+
"Validation DataLoader 0: 69%|βββββββ | 58/84 [00:09<00:04, 6.06it/s]\u001b[A\n",
|
554 |
+
"Validation DataLoader 0: 70%|βββββββ | 59/84 [00:09<00:04, 6.05it/s]\u001b[A\n",
|
555 |
+
"Validation DataLoader 0: 71%|ββββββββ | 60/84 [00:09<00:03, 6.04it/s]\u001b[A\n",
|
556 |
+
"Validation DataLoader 0: 73%|ββββββββ | 61/84 [00:10<00:03, 6.02it/s]\u001b[A\n",
|
557 |
+
"Validation DataLoader 0: 74%|ββββββββ | 62/84 [00:10<00:03, 6.00it/s]\u001b[A\n",
|
558 |
+
"Validation DataLoader 0: 75%|ββββββββ | 63/84 [00:10<00:03, 5.99it/s]\u001b[A\n",
|
559 |
+
"Validation DataLoader 0: 76%|ββββββββ | 64/84 [00:10<00:03, 5.99it/s]\u001b[A\n",
|
560 |
+
"Validation DataLoader 0: 77%|ββββββββ | 65/84 [00:10<00:03, 6.00it/s]\u001b[A\n",
|
561 |
+
"Validation DataLoader 0: 79%|ββββββββ | 66/84 [00:10<00:02, 6.00it/s]\u001b[A\n",
|
562 |
+
"Validation DataLoader 0: 80%|ββββββββ | 67/84 [00:11<00:02, 6.00it/s]\u001b[A\n",
|
563 |
+
"Validation DataLoader 0: 81%|ββββββββ | 68/84 [00:11<00:02, 6.00it/s]\u001b[A\n",
|
564 |
+
"Validation DataLoader 0: 82%|βββββββββ | 69/84 [00:11<00:02, 6.00it/s]\u001b[A\n",
|
565 |
+
"Validation DataLoader 0: 83%|βββββββββ | 70/84 [00:11<00:02, 6.01it/s]\u001b[A\n",
|
566 |
+
"Validation DataLoader 0: 85%|βββββββββ | 71/84 [00:11<00:02, 6.02it/s]\u001b[A\n",
|
567 |
+
"Validation DataLoader 0: 86%|βββββββββ | 72/84 [00:11<00:01, 6.03it/s]\u001b[A\n",
|
568 |
+
"Validation DataLoader 0: 87%|βββββββββ | 73/84 [00:12<00:01, 6.04it/s]\u001b[A\n",
|
569 |
+
"Validation DataLoader 0: 88%|βββββββββ | 74/84 [00:12<00:01, 6.05it/s]\u001b[A\n",
|
570 |
+
"Validation DataLoader 0: 89%|βββββββββ | 75/84 [00:12<00:01, 6.06it/s]\u001b[A\n",
|
571 |
+
"Validation DataLoader 0: 90%|βββββββββ | 76/84 [00:12<00:01, 6.06it/s]\u001b[A\n",
|
572 |
+
"Validation DataLoader 0: 92%|ββββββββββ| 77/84 [00:12<00:01, 6.07it/s]\u001b[A\n",
|
573 |
+
"Validation DataLoader 0: 93%|ββββββββββ| 78/84 [00:12<00:00, 6.08it/s]\u001b[A\n",
|
574 |
+
"Validation DataLoader 0: 94%|ββββββββββ| 79/84 [00:12<00:00, 6.09it/s]\u001b[A\n",
|
575 |
+
"Validation DataLoader 0: 95%|ββββββββββ| 80/84 [00:13<00:00, 6.10it/s]\u001b[A\n",
|
576 |
+
"Validation DataLoader 0: 96%|ββββββββββ| 81/84 [00:13<00:00, 6.11it/s]\u001b[A\n",
|
577 |
+
"Validation DataLoader 0: 98%|ββββββββββ| 82/84 [00:13<00:00, 6.09it/s]\u001b[A\n",
|
578 |
+
"Validation DataLoader 0: 99%|ββββββββββ| 83/84 [00:13<00:00, 6.09it/s]\u001b[A\n",
|
579 |
+
"Validation DataLoader 0: 100%|ββββββββββ| 84/84 [00:13<00:00, 6.08it/s]\u001b[A\n",
|
580 |
+
"Epoch 0: 100%|ββββββββββ| 60/60 [00:30<00:00, 1.94it/s] \u001b[A"
|
581 |
+
]
|
582 |
+
},
|
583 |
+
{
|
584 |
+
"name": "stderr",
|
585 |
+
"output_type": "stream",
|
586 |
+
"text": [
|
587 |
+
"`Trainer.fit` stopped: `max_epochs=1` reached.\n"
|
588 |
+
]
|
589 |
+
},
|
590 |
+
{
|
591 |
+
"name": "stdout",
|
592 |
+
"output_type": "stream",
|
593 |
+
"text": [
|
594 |
+
"Epoch 0: 100%|ββββββββββ| 60/60 [00:30<00:00, 1.94it/s]\n"
|
595 |
+
]
|
596 |
+
}
|
597 |
+
],
|
598 |
+
"source": [
|
599 |
+
"if __name__ == \"__main__\":\n",
|
600 |
+
" \n",
|
601 |
+
" GRID_EDGE_LIST = generate_grid_edge_list(GRID_SIZE)\n",
|
602 |
+
" GRID_EDGE_LIST = th.tensor(GRID_EDGE_LIST, dtype=th.int)\n",
|
603 |
+
" GRID_EDGE_LIST = GRID_EDGE_LIST.T\n",
|
604 |
+
" GRID_EDGE_LIST = GRID_EDGE_LIST.to(th.device(\"cuda\"))\n",
|
605 |
+
" \n",
|
606 |
+
" noisy_meshes_h5 = h5py.File(\"./Standart_h5/Synthetic_noisy.h5\", \"r\")\n",
|
607 |
+
" orig_meshes_h5 = h5py.File(\"./Standart_h5/Synthetic.h5\", \"r\")\n",
|
608 |
+
" \n",
|
609 |
+
" train_dataset = StandartH5DataSet(orig_meshes_h5=orig_meshes_h5['train'],\n",
|
610 |
+
" noisy_meshes_h5=noisy_meshes_h5['train'],\n",
|
611 |
+
" fields_grid_size=GRID_SIZE,\n",
|
612 |
+
" min_verts=MIN_V_NUMBER,\n",
|
613 |
+
" max_verts=MAX_V_NUMBER)\n",
|
614 |
+
" test_dataset = StandartH5DataSet(orig_meshes_h5=orig_meshes_h5['test'],\n",
|
615 |
+
" noisy_meshes_h5=noisy_meshes_h5['test'],\n",
|
616 |
+
" fields_grid_size=GRID_SIZE,\n",
|
617 |
+
" min_verts=MIN_V_NUMBER,\n",
|
618 |
+
" max_verts=MAX_V_NUMBER)\n",
|
619 |
+
"\n",
|
620 |
+
" train_dataloader = th.utils.data.DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=False)\n",
|
621 |
+
" test_dataloader = th.utils.data.DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=False)\n",
|
622 |
+
"\n",
|
623 |
+
" trainer = pl.Trainer(accelerator=\"gpu\", \n",
|
624 |
+
" callbacks=[checkpoint_callback],\n",
|
625 |
+
" log_every_n_steps=len(train_dataset)+len(test_dataset),\n",
|
626 |
+
" fast_dev_run=(300 if IS_DEBUG else False),\n",
|
627 |
+
" max_epochs=200,\n",
|
628 |
+
" precision=16)\n",
|
629 |
+
" \n",
|
630 |
+
" model = Model()\n",
|
631 |
+
" trainer.fit(model, train_dataloaders=train_dataloader, val_dataloaders=test_dataloader)\n",
|
632 |
+
" if LOG_VISUALS:\n",
|
633 |
+
" model.log_points_file.close()\n",
|
634 |
+
" model.log_normals_file.close()"
|
635 |
+
]
|
636 |
+
},
|
637 |
+
{
|
638 |
+
"cell_type": "code",
|
639 |
+
"execution_count": null,
|
640 |
+
"id": "bda6c1bf-7674-4e59-8cc7-dfcba9d689d9",
|
641 |
+
"metadata": {},
|
642 |
+
"outputs": [],
|
643 |
+
"source": []
|
644 |
+
}
|
645 |
+
],
|
646 |
+
"metadata": {
|
647 |
+
"kernelspec": {
|
648 |
+
"display_name": "senv",
|
649 |
+
"language": "python",
|
650 |
+
"name": "senv"
|
651 |
+
},
|
652 |
+
"language_info": {
|
653 |
+
"codemirror_mode": {
|
654 |
+
"name": "ipython",
|
655 |
+
"version": 3
|
656 |
+
},
|
657 |
+
"file_extension": ".py",
|
658 |
+
"mimetype": "text/x-python",
|
659 |
+
"name": "python",
|
660 |
+
"nbconvert_exporter": "python",
|
661 |
+
"pygments_lexer": "ipython3",
|
662 |
+
"version": "3.9.16"
|
663 |
+
}
|
664 |
+
},
|
665 |
+
"nbformat": 4,
|
666 |
+
"nbformat_minor": 5
|
667 |
+
}
|