MWilinski's picture
testllama2
5ed94e2
import os
import json
import requests
import subprocess
import torch
import transformers
from urllib.parse import quote
from typing import Mapping, Optional, List, Any
from huggingface_hub import snapshot_download
from transformers import AutoTokenizer, AutoModelForCausalLM
from langchain import PromptTemplate, HuggingFaceHub, LLMChain
from langchain.llms import HuggingFacePipeline
from langchain.llms.base import LLM
from langchain.embeddings import HuggingFaceEmbeddings, HuggingFaceHubEmbeddings, HuggingFaceInstructEmbeddings
from langchain.vectorstores import FAISS
from .mocks import MockLocalBinaryModel
from api.logger import logger
from api.question_answering.response import Response
class LocalBinaryModel(LLM):
model_id: str = None
llm: None = None
def __init__(self, model_id: str = None):
super().__init__()
from llama_cpp import Llama
model_path = f'api/question_answering/{model_id}'
if not os.path.exists(model_path):
raise ValueError(f'{model_path} does not exist')
self.model_id = model_id
self.llm = Llama(model_path=model_path, n_ctx=4096)
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
prompt = f'Q: {prompt} A: '
output = self.llm(
prompt,
max_tokens=1024,
stop=['Q:'],
echo=False
)
output_text = output['choices'][0]['text']
return output_text
@property
def _identifying_params(self) -> Mapping[str, Any]:
return {"name_of_model": self.model_id}
@property
def _llm_type(self) -> str:
return self.model_id
class TransformersPipelineModel(LLM):
model_id: str = None
pipeline: str = None
def __init__(self, model_id: str = None):
super().__init__()
self.model_id = model_id
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
load_in_8bit=False,
device_map="auto",
resume_download=True,
)
self.pipeline = transformers.pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=2048,
)
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
output_text = self.pipeline(prompt)[0]['generated_text']
output_text = output_text.replace(prompt+'\n', '')
return output_text
@property
def _identifying_params(self) -> Mapping[str, Any]:
return {"name_of_model": self.model_id}
@property
def _llm_type(self) -> str:
return self.model_id
class APIServedModel(LLM):
model_url: str = None
debug: bool = None
def __init__(self, model_url: str = None, debug: bool = None):
super().__init__()
if model_url[-1] == '/':
raise ValueError('URL should not end with a slash - "/"')
self.model_url = model_url
self.debug = debug
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
prompt_encoded = quote(prompt, safe='')
url = f'{self.model_url}/?prompt={prompt_encoded}'
if self.debug:
logger.info(f'URL: {url}')
try:
response = requests.get(url, timeout=1200, verify=False)
response.raise_for_status()
output_text = json.loads(response.content)['output_text']
return output_text
except Exception as err:
logger.error(f'Error: {err}')
return f'Error: {err}'
@property
def _identifying_params(self) -> Mapping[str, Any]:
return {"name_of_model": f'model url: {self.model_url}'}
@property
def _llm_type(self) -> str:
return 'api_model'
class QAModel():
"""
QAModel class, used for generating answers to questions.
Args:
llm_model_id (str): The ID of the LLM model to be used.
embedding_model_id (str): The ID of the embedding model to be used.
index_repo_id (str): The ID of the index repository to be used.
run_locally (bool, optional): Whether to run the models locally or on the Hugging Face hub. Defaults to True.
use_docs_for_context (bool, optional): Whether to use relevant documents as context for generating answers.
Defaults to True.
use_messages_for_context (bool, optional): Whether to use previous messages as context for generating answers.
Defaults to True.
debug (bool, optional): Whether to log debug information. Defaults to False.
Attributes:
use_docs_for_context (bool): Whether to use relevant documents as context for generating answers.
use_messages_for_context (bool): Whether to use previous messages as context for generating answers.
debug (bool): Whether to log debug information.
llm_model (Union[LocalBinaryModel, HuggingFacePipeline, HuggingFaceHub]): The LLM model to be used.
embedding_model (Union[HuggingFaceInstructEmbeddings, HuggingFaceHubEmbeddings]): The embedding model to be used.
prompt_template (PromptTemplate): The prompt template to be used.
llm_chain (LLMChain): The LLM chain to be used.
knowledge_index (FAISS): The FAISS index to be used.
"""
def __init__(
self,
llm_model_id: str,
embedding_model_id: str,
index_repo_id: str,
use_docs_for_context: bool = True,
add_sources_to_response: bool = True,
use_messages_for_context: bool = True,
num_relevant_docs: int = 3,
debug: bool = False
):
super().__init__()
self.use_docs_for_context = use_docs_for_context
self.add_sources_to_response = add_sources_to_response
self.use_messages_for_context = use_messages_for_context
self.num_relevant_docs = num_relevant_docs
self.debug = debug
if 'local_models/' in llm_model_id:
logger.info('using local binary model')
self.llm_model = LocalBinaryModel(
model_id=llm_model_id
)
elif 'api_models/' in llm_model_id:
logger.info('using api served model')
self.llm_model = APIServedModel(
model_url=llm_model_id.replace('api_models/', ''),
debug=self.debug
)
else:
logger.info('using transformers pipeline model')
self.llm_model = TransformersPipelineModel(
model_id=llm_model_id
)
prompt_template = \
"### Instruction:\n" \
"Give an answer that contains all the necessary information for the question.\n" \
"If the context contains necessary information to answer question, use it to generate an appropriate response.\n" \
"{context}\n### Input:\n{question}\n### Response:"
prompt = PromptTemplate(
template=prompt_template,
input_variables=['question', 'context']
)
self.llm_chain = LLMChain(prompt=prompt, llm=self.llm_model)
if self.use_docs_for_context:
logger.info(f'Downloading {index_repo_id}')
snapshot_download(
repo_id=index_repo_id,
allow_patterns=['*.faiss', '*.pkl'],
repo_type='dataset',
local_dir='indexes/run/'
)
logger.info('Loading embedding model')
embed_instruction = "Represent the Hugging Face library documentation"
query_instruction = "Query the most relevant piece of information from the Hugging Face documentation"
embedding_model = HuggingFaceInstructEmbeddings(
model_name=embedding_model_id,
embed_instruction=embed_instruction,
query_instruction=query_instruction
)
logger.info('Loading index')
self.knowledge_index = FAISS.load_local(f"./indexes/run/", embedding_model)
def get_response(self, question: str, messages_context: str = '') -> Response:
"""
Generate an answer to the specified question.
Args:
question (str): The question to be answered.
messages_context (str, optional): The context to be used for generating the answer. Defaults to ''.
Returns:
response (Response): The Response object containing the generated answer and the sources of information
used to generate the response.
"""
response = Response()
context = 'Give an answer that contains all the necessary information for the question.\n'
relevant_docs = ''
if self.use_messages_for_context and messages_context:
messages_context = f'\nPrevious questions and answers:\n{messages_context}'
context += messages_context
if self.use_docs_for_context:
logger.info(f'Retriving documents')
relevant_docs = self.knowledge_index.similarity_search(
query=messages_context+question,
k=self.num_relevant_docs
)
context += '\nExtracted documents:\n'
context += "".join([doc.page_content for doc in relevant_docs])
metadata = [doc.metadata for doc in relevant_docs]
response.set_sources(sources=[str(m['source']) for m in metadata])
logger.info(f'Running LLM chain')
answer = self.llm_chain.run(question=question, context=context)
response.set_answer(answer)
logger.info(f'Received answer')
if self.debug:
sep = '\n' + '-' * 100
logger.info(sep)
logger.info(f'messages_contex: {messages_context} {sep}')
logger.info(f'relevant_docs: {relevant_docs} {sep}')
sources_str = '\n'.join(response.get_sources())
logger.info(f"sources:\n{sources_str} {sep}")
logger.info(f'context len: {len(context)} {sep}')
logger.info(f'context: {context} {sep}')
logger.info(f'question len: {len(question)}')
logger.info(f'question: {question} {sep}')
logger.info(f'response: {response.get_answer()} {sep}')
return response