test as an API
Browse files- app.py +19 -502
- app_full.py +502 -0
app.py
CHANGED
@@ -1,502 +1,19 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
import torch
|
21 |
-
import gradio as gr
|
22 |
-
|
23 |
-
from audiocraft.data.audio_utils import convert_audio
|
24 |
-
from audiocraft.data.audio import audio_write
|
25 |
-
from audiocraft.models import MusicGen, MultiBandDiffusion
|
26 |
-
|
27 |
-
|
28 |
-
MODEL = None # Last used model
|
29 |
-
IS_BATCHED = "facebook/MusicGen" in os.environ.get('SPACE_ID', '')
|
30 |
-
print(IS_BATCHED)
|
31 |
-
MAX_BATCH_SIZE = 12
|
32 |
-
BATCHED_DURATION = 15
|
33 |
-
INTERRUPTING = False
|
34 |
-
MBD = None
|
35 |
-
# We have to wrap subprocess call to clean a bit the log when using gr.make_waveform
|
36 |
-
_old_call = sp.call
|
37 |
-
|
38 |
-
|
39 |
-
def _call_nostderr(*args, **kwargs):
|
40 |
-
# Avoid ffmpeg vomiting on the logs.
|
41 |
-
kwargs['stderr'] = sp.DEVNULL
|
42 |
-
kwargs['stdout'] = sp.DEVNULL
|
43 |
-
_old_call(*args, **kwargs)
|
44 |
-
|
45 |
-
|
46 |
-
sp.call = _call_nostderr
|
47 |
-
# Preallocating the pool of processes.
|
48 |
-
pool = ProcessPoolExecutor(4)
|
49 |
-
pool.__enter__()
|
50 |
-
|
51 |
-
|
52 |
-
def interrupt():
|
53 |
-
global INTERRUPTING
|
54 |
-
INTERRUPTING = True
|
55 |
-
|
56 |
-
|
57 |
-
class FileCleaner:
|
58 |
-
def __init__(self, file_lifetime: float = 3600):
|
59 |
-
self.file_lifetime = file_lifetime
|
60 |
-
self.files = []
|
61 |
-
|
62 |
-
def add(self, path: tp.Union[str, Path]):
|
63 |
-
self._cleanup()
|
64 |
-
self.files.append((time.time(), Path(path)))
|
65 |
-
|
66 |
-
def _cleanup(self):
|
67 |
-
now = time.time()
|
68 |
-
for time_added, path in list(self.files):
|
69 |
-
if now - time_added > self.file_lifetime:
|
70 |
-
if path.exists():
|
71 |
-
path.unlink()
|
72 |
-
self.files.pop(0)
|
73 |
-
else:
|
74 |
-
break
|
75 |
-
|
76 |
-
|
77 |
-
file_cleaner = FileCleaner()
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
def make_waveform(*args, **kwargs):
|
82 |
-
# Further remove some warnings.
|
83 |
-
be = time.time()
|
84 |
-
with warnings.catch_warnings():
|
85 |
-
warnings.simplefilter('ignore')
|
86 |
-
out = gr.make_waveform(*args, **kwargs)
|
87 |
-
print("Make a video took", time.time() - be)
|
88 |
-
return out
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
# write a similar function to make_waveform, but for video generated using an image with ans aspect ration of 16:9
|
93 |
-
|
94 |
-
def make_video(*args, **kwargs):
|
95 |
-
# Further remove some warnings.
|
96 |
-
be = time.time()
|
97 |
-
with warnings.catch_warnings():
|
98 |
-
warnings.simplefilter('ignore')
|
99 |
-
out = gr.make_video(*args, **kwargs)
|
100 |
-
print("Make a video took", time.time() - be)
|
101 |
-
return out
|
102 |
-
|
103 |
-
# write make video functions for other aspect ratios and use ffmpeg to combine them into a single video
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
# def load_model(version='facebook/musicgen-melody'):
|
109 |
-
def load_model(version='facebook/musicgen-small'):
|
110 |
-
global MODEL
|
111 |
-
print("Loading model", version)
|
112 |
-
if MODEL is None or MODEL.name != version:
|
113 |
-
MODEL = MusicGen.get_pretrained(version)
|
114 |
-
|
115 |
-
|
116 |
-
def load_diffusion():
|
117 |
-
global MBD
|
118 |
-
if MBD is None:
|
119 |
-
print("loading MBD")
|
120 |
-
MBD = MultiBandDiffusion.get_mbd_musicgen()
|
121 |
-
|
122 |
-
|
123 |
-
def _do_predictions(texts, melodies, duration, progress=False, **gen_kwargs):
|
124 |
-
MODEL.set_generation_params(duration=duration, **gen_kwargs)
|
125 |
-
print("new batch", len(texts), texts, [
|
126 |
-
None if m is None else (m[0], m[1].shape) for m in melodies])
|
127 |
-
be = time.time()
|
128 |
-
processed_melodies = []
|
129 |
-
target_sr = 32000
|
130 |
-
target_ac = 1
|
131 |
-
for melody in melodies:
|
132 |
-
if melody is None:
|
133 |
-
processed_melodies.append(None)
|
134 |
-
else:
|
135 |
-
sr, melody = melody[0], torch.from_numpy(
|
136 |
-
melody[1]).to(MODEL.device).float().t()
|
137 |
-
if melody.dim() == 1:
|
138 |
-
melody = melody[None]
|
139 |
-
melody = melody[..., :int(sr * duration)]
|
140 |
-
melody = convert_audio(melody, sr, target_sr, target_ac)
|
141 |
-
processed_melodies.append(melody)
|
142 |
-
|
143 |
-
if any(m is not None for m in processed_melodies):
|
144 |
-
outputs = MODEL.generate_with_chroma(
|
145 |
-
descriptions=texts,
|
146 |
-
melody_wavs=processed_melodies,
|
147 |
-
melody_sample_rate=target_sr,
|
148 |
-
progress=progress,
|
149 |
-
return_tokens=USE_DIFFUSION
|
150 |
-
)
|
151 |
-
else:
|
152 |
-
outputs = MODEL.generate(
|
153 |
-
texts, progress=progress, return_tokens=USE_DIFFUSION)
|
154 |
-
if USE_DIFFUSION:
|
155 |
-
outputs_diffusion = MBD.tokens_to_wav(outputs[1])
|
156 |
-
outputs = torch.cat([outputs[0], outputs_diffusion], dim=0)
|
157 |
-
outputs = outputs.detach().cpu().float()
|
158 |
-
# return outputs
|
159 |
-
pending_videos = []
|
160 |
-
out_wavs = []
|
161 |
-
for output in outputs:
|
162 |
-
with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file:
|
163 |
-
audio_write(
|
164 |
-
file.name, output, MODEL.sample_rate, strategy="loudness",
|
165 |
-
loudness_headroom_db=16, loudness_compressor=True, add_suffix=False)
|
166 |
-
pending_videos.append(pool.submit(make_waveform, file.name))
|
167 |
-
# pending_videos.append(pool.submit(make_video, file.name))
|
168 |
-
out_wavs.append(file.name)
|
169 |
-
file_cleaner.add(file.name)
|
170 |
-
out_videos = [pending_video.result() for pending_video in pending_videos]
|
171 |
-
for video in out_videos:
|
172 |
-
file_cleaner.add(video)
|
173 |
-
print("batch finished", len(texts), time.time() - be)
|
174 |
-
print("Tempfiles currently stored: ", len(file_cleaner.files))
|
175 |
-
# here I could ipload this to youtube music
|
176 |
-
# return out_wavs
|
177 |
-
return out_videos, out_wavs
|
178 |
-
|
179 |
-
|
180 |
-
def predict_batched(texts, melodies):
|
181 |
-
max_text_length = 512
|
182 |
-
texts = [text[:max_text_length] for text in texts]
|
183 |
-
load_model('facebook/musicgen-small')
|
184 |
-
res = _do_predictions(texts, melodies, BATCHED_DURATION)
|
185 |
-
return res
|
186 |
-
|
187 |
-
|
188 |
-
def predict_full(model, decoder, text, melody, duration, topk, topp, temperature, cfg_coef, progress=gr.Progress()):
|
189 |
-
global INTERRUPTING
|
190 |
-
global USE_DIFFUSION
|
191 |
-
INTERRUPTING = False
|
192 |
-
if temperature < 0:
|
193 |
-
raise gr.Error("Temperature must be >= 0.")
|
194 |
-
if topk < 0:
|
195 |
-
raise gr.Error("Topk must be non-negative.")
|
196 |
-
if topp < 0:
|
197 |
-
raise gr.Error("Topp must be non-negative.")
|
198 |
-
|
199 |
-
topk = int(topk)
|
200 |
-
if decoder == "MultiBand_Diffusion":
|
201 |
-
USE_DIFFUSION = True
|
202 |
-
load_diffusion()
|
203 |
-
else:
|
204 |
-
USE_DIFFUSION = False
|
205 |
-
load_model(model)
|
206 |
-
|
207 |
-
def _progress(generated, to_generate):
|
208 |
-
progress((min(generated, to_generate), to_generate))
|
209 |
-
if INTERRUPTING:
|
210 |
-
raise gr.Error("Interrupted.")
|
211 |
-
MODEL.set_custom_progress_callback(_progress)
|
212 |
-
|
213 |
-
videos, wavs = _do_predictions(
|
214 |
-
[text], [melody], duration, progress=True,
|
215 |
-
top_k=topk, top_p=topp, temperature=temperature, cfg_coef=cfg_coef)
|
216 |
-
if USE_DIFFUSION:
|
217 |
-
return videos[0], wavs[0], videos[1], wavs[1]
|
218 |
-
return videos[0], wavs[0], None, None
|
219 |
-
|
220 |
-
|
221 |
-
def toggle_audio_src(choice):
|
222 |
-
if choice == "mic":
|
223 |
-
return gr.update(source="microphone", value=None, label="Microphone")
|
224 |
-
else:
|
225 |
-
return gr.update(source="upload", value=None, label="File")
|
226 |
-
|
227 |
-
|
228 |
-
def toggle_diffusion(choice):
|
229 |
-
if choice == "MultiBand_Diffusion":
|
230 |
-
return [gr.update(visible=True)] * 2
|
231 |
-
else:
|
232 |
-
return [gr.update(visible=False)] * 2
|
233 |
-
|
234 |
-
|
235 |
-
def ui_full(launch_kwargs):
|
236 |
-
with gr.Blocks() as interface:
|
237 |
-
gr.Markdown(
|
238 |
-
"""
|
239 |
-
# MusicGen
|
240 |
-
This is your private demo for [MusicGen](https://github.com/facebookresearch/audiocraft),
|
241 |
-
a simple and controllable model for music generation
|
242 |
-
presented at: ["Simple and Controllable Music Generation"](https://huggingface.co/papers/2306.05284)
|
243 |
-
"""
|
244 |
-
)
|
245 |
-
with gr.Row():
|
246 |
-
with gr.Column():
|
247 |
-
with gr.Row():
|
248 |
-
text = gr.Text(
|
249 |
-
label="Input Text", value="Chill and relaxing downtempo for the shower", interactive=True)
|
250 |
-
with gr.Column():
|
251 |
-
radio = gr.Radio(["file", "mic"], value="file",
|
252 |
-
label="Condition on a melody (optional) File or Mic")
|
253 |
-
melody = gr.Audio(source="upload", type="numpy", label="File",
|
254 |
-
interactive=True, elem_id="melody-input")
|
255 |
-
with gr.Row():
|
256 |
-
submit = gr.Button("Submit")
|
257 |
-
# Adapted from https://github.com/rkfg/audiocraft/blob/long/app.py, MIT license.
|
258 |
-
_ = gr.Button("Interrupt").click(fn=interrupt, queue=False)
|
259 |
-
with gr.Row():
|
260 |
-
model = gr.Radio(["facebook/musicgen-melody", "facebook/musicgen-medium", "facebook/musicgen-small",
|
261 |
-
"facebook/musicgen-large"],
|
262 |
-
label="Model", value="facebook/musicgen-small", interactive=True)
|
263 |
-
with gr.Row():
|
264 |
-
decoder = gr.Radio(["Default", "MultiBand_Diffusion"],
|
265 |
-
label="Decoder", value="Default", interactive=True)
|
266 |
-
with gr.Row():
|
267 |
-
duration = gr.Slider(
|
268 |
-
minimum=1, maximum=120, value=20, label="Duration", interactive=True)
|
269 |
-
with gr.Row():
|
270 |
-
topk = gr.Number(label="Top-k", value=250,
|
271 |
-
interactive=True)
|
272 |
-
topp = gr.Number(label="Top-p", value=0, interactive=True)
|
273 |
-
temperature = gr.Number(
|
274 |
-
label="Temperature", value=1.0, interactive=True)
|
275 |
-
cfg_coef = gr.Number(
|
276 |
-
label="Classifier Free Guidance", value=3.0, interactive=True)
|
277 |
-
with gr.Column():
|
278 |
-
output = gr.Video(label="Generated Music")
|
279 |
-
audio_output = gr.Audio(
|
280 |
-
label="Generated Music (wav)", type='filepath')
|
281 |
-
diffusion_output = gr.Video(
|
282 |
-
label="MultiBand Diffusion Decoder")
|
283 |
-
audio_diffusion = gr.Audio(
|
284 |
-
label="MultiBand Diffusion Decoder (wav)", type='filepath')
|
285 |
-
submit.click(toggle_diffusion, decoder, [diffusion_output, audio_diffusion], queue=False,
|
286 |
-
show_progress=False, api_name="generate").then(predict_full, inputs=[model, decoder, text, melody, duration, topk, topp,
|
287 |
-
temperature, cfg_coef],
|
288 |
-
outputs=[output, audio_output, diffusion_output, audio_diffusion])
|
289 |
-
radio.change(toggle_audio_src, radio, [
|
290 |
-
melody], queue=False, show_progress=False)
|
291 |
-
|
292 |
-
gr.Examples(
|
293 |
-
fn=predict_full,
|
294 |
-
examples=[
|
295 |
-
[
|
296 |
-
"An 80s driving pop song with heavy drums and synth pads in the background",
|
297 |
-
"./assets/bach.mp3",
|
298 |
-
"facebook/musicgen-melody",
|
299 |
-
"Default"
|
300 |
-
],
|
301 |
-
[
|
302 |
-
"90s rock song with electric guitar and heavy drums",
|
303 |
-
None,
|
304 |
-
"facebook/musicgen-medium",
|
305 |
-
"Default"
|
306 |
-
],
|
307 |
-
[
|
308 |
-
"a light and cheerly EDM track, with syncopated drums, aery pads, and strong emotions",
|
309 |
-
"./assets/bach.mp3",
|
310 |
-
"facebook/musicgen-melody",
|
311 |
-
"Default"
|
312 |
-
],
|
313 |
-
[
|
314 |
-
"lofi slow bpm electro chill with organic samples",
|
315 |
-
None,
|
316 |
-
"facebook/musicgen-medium",
|
317 |
-
"Default"
|
318 |
-
],
|
319 |
-
[
|
320 |
-
"Punk rock with loud drum and power guitar",
|
321 |
-
None,
|
322 |
-
"facebook/musicgen-medium",
|
323 |
-
"MultiBand_Diffusion"
|
324 |
-
],
|
325 |
-
],
|
326 |
-
inputs=[text, melody, model, decoder],
|
327 |
-
outputs=[output]
|
328 |
-
)
|
329 |
-
gr.Markdown(
|
330 |
-
"""
|
331 |
-
### More details
|
332 |
-
|
333 |
-
The model will generate a short music extract based on the description you provided.
|
334 |
-
The model can generate up to 30 seconds of audio in one pass. It is now possible
|
335 |
-
to extend the generation by feeding back the end of the previous chunk of audio.
|
336 |
-
This can take a long time, and the model might lose consistency. The model might also
|
337 |
-
decide at arbitrary positions that the song ends.
|
338 |
-
|
339 |
-
**WARNING:** Choosing long durations will take a long time to generate (2min might take ~10min).
|
340 |
-
An overlap of 12 seconds is kept with the previously generated chunk, and 18 "new" seconds
|
341 |
-
are generated each time.
|
342 |
-
|
343 |
-
We present 4 model variations:
|
344 |
-
1. facebook/musicgen-melody -- a music generation model capable of generating music condition
|
345 |
-
on text and melody inputs. **Note**, you can also use text only.
|
346 |
-
2. facebook/musicgen-small -- a 300M transformer decoder conditioned on text only.
|
347 |
-
3. facebook/musicgen-medium -- a 1.5B transformer decoder conditioned on text only.
|
348 |
-
4. facebook/musicgen-large -- a 3.3B transformer decoder conditioned on text only.
|
349 |
-
|
350 |
-
We also present two way of decoding the audio tokens
|
351 |
-
1. Use the default GAN based compression model
|
352 |
-
2. Use MultiBand Diffusion from (paper linknano )
|
353 |
-
|
354 |
-
When using `facebook/musicgen-melody`, you can optionally provide a reference audio from
|
355 |
-
which a broad melody will be extracted. The model will then try to follow both
|
356 |
-
the description and melody provided.
|
357 |
-
|
358 |
-
You can also use your own GPU or a Google Colab by following the instructions on our repo.
|
359 |
-
See [github.com/facebookresearch/audiocraft](https://github.com/facebookresearch/audiocraft)
|
360 |
-
for more details.
|
361 |
-
"""
|
362 |
-
)
|
363 |
-
|
364 |
-
interface.queue().launch(**launch_kwargs)
|
365 |
-
# interface.queue().launch(**launch_kwargs, share=True)
|
366 |
-
|
367 |
-
|
368 |
-
def ui_batched(launch_kwargs):
|
369 |
-
with gr.Blocks() as demo:
|
370 |
-
gr.Markdown(
|
371 |
-
"""
|
372 |
-
# MusicGen
|
373 |
-
|
374 |
-
This is the demo for [MusicGen](https://github.com/facebookresearch/audiocraft),
|
375 |
-
a simple and controllable model for music generation
|
376 |
-
presented at: ["Simple and Controllable Music Generation"](https://huggingface.co/papers/2306.05284).
|
377 |
-
<br/>
|
378 |
-
<a href="https://huggingface.co/spaces/facebook/MusicGen?duplicate=true"
|
379 |
-
style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank">
|
380 |
-
<img style="margin-bottom: 0em;display: inline;margin-top: -.25em;"
|
381 |
-
src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
|
382 |
-
for longer sequences, more control and no queue.</p>
|
383 |
-
"""
|
384 |
-
)
|
385 |
-
with gr.Row():
|
386 |
-
with gr.Column():
|
387 |
-
with gr.Row():
|
388 |
-
text = gr.Text(label="Describe your music",
|
389 |
-
value="Chill and relaxing downtempo for the shower", lines=2, interactive=True)
|
390 |
-
with gr.Column():
|
391 |
-
radio = gr.Radio(["file", "mic"], value="file",
|
392 |
-
label="Condition on a melody (optional) File or Mic")
|
393 |
-
melody = gr.Audio(source="upload", type="numpy", label="File",
|
394 |
-
interactive=True, elem_id="melody-input")
|
395 |
-
with gr.Row():
|
396 |
-
submit = gr.Button("Generate")
|
397 |
-
with gr.Column():
|
398 |
-
output = gr.Video(label="Generated Music")
|
399 |
-
audio_output = gr.Audio(
|
400 |
-
label="Generated Music (wav)", type='filepath')
|
401 |
-
submit.click(predict_batched, inputs=[text, melody],
|
402 |
-
outputs=[output, audio_output], batch=True, max_batch_size=MAX_BATCH_SIZE, api_name="create")
|
403 |
-
radio.change(toggle_audio_src, radio, [
|
404 |
-
melody], queue=False, show_progress=False)
|
405 |
-
# gr.Examples(
|
406 |
-
# fn=predict_batched,
|
407 |
-
# examples=[
|
408 |
-
# [
|
409 |
-
# "An 80s driving pop song with heavy drums and synth pads in the background",
|
410 |
-
# "./assets/bach.mp3",
|
411 |
-
# ],
|
412 |
-
# [
|
413 |
-
# "A cheerful country song with acoustic guitars",
|
414 |
-
# "./assets/bolero_ravel.mp3",
|
415 |
-
# ],
|
416 |
-
# [
|
417 |
-
# "90s rock song with electric guitar and heavy drums",
|
418 |
-
# None,
|
419 |
-
# ],
|
420 |
-
# [
|
421 |
-
# "a light and cheerly EDM track, with syncopated drums, aery pads, and strong emotions bpm: 130",
|
422 |
-
# "./assets/bach.mp3",
|
423 |
-
# ],
|
424 |
-
# [
|
425 |
-
# "lofi slow bpm electro chill with organic samples",
|
426 |
-
# None,
|
427 |
-
# ],
|
428 |
-
# ],
|
429 |
-
# inputs=[text, melody],
|
430 |
-
# outputs=[output]
|
431 |
-
# )
|
432 |
-
gr.Markdown("""
|
433 |
-
### More details
|
434 |
-
|
435 |
-
The model will generate 12 seconds of audio based on the description you provided.
|
436 |
-
You can optionally provide a reference audio from which a broad melody will be extracted.
|
437 |
-
The model will then try to follow both the description and melody provided.
|
438 |
-
All samples are generated with the `melody` model.
|
439 |
-
|
440 |
-
You can also use your own GPU or a Google Colab by following the instructions on our repo.
|
441 |
-
|
442 |
-
See [github.com/facebookresearch/audiocraft](https://github.com/facebookresearch/audiocraft)
|
443 |
-
for more details.
|
444 |
-
""")
|
445 |
-
|
446 |
-
demo.queue().launch(**launch_kwargs)
|
447 |
-
# demo.queue(max_size=8 * 4).launch(**launch_kwargs, share=True)
|
448 |
-
|
449 |
-
|
450 |
-
if __name__ == "__main__":
|
451 |
-
parser = argparse.ArgumentParser()
|
452 |
-
parser.add_argument(
|
453 |
-
'--listen',
|
454 |
-
type=str,
|
455 |
-
default='0.0.0.0' if 'SPACE_ID' in os.environ else '127.0.0.1',
|
456 |
-
help='IP to listen on for connections to Gradio',
|
457 |
-
)
|
458 |
-
parser.add_argument(
|
459 |
-
'--username', type=str, default='', help='Username for authentication'
|
460 |
-
)
|
461 |
-
parser.add_argument(
|
462 |
-
'--password', type=str, default='', help='Password for authentication'
|
463 |
-
)
|
464 |
-
parser.add_argument(
|
465 |
-
'--server_port',
|
466 |
-
type=int,
|
467 |
-
default=0,
|
468 |
-
help='Port to run the server listener on',
|
469 |
-
)
|
470 |
-
parser.add_argument(
|
471 |
-
'--inbrowser', action='store_true', help='Open in browser'
|
472 |
-
)
|
473 |
-
parser.add_argument(
|
474 |
-
'--share', action='store_true', help='Share the gradio UI'
|
475 |
-
)
|
476 |
-
|
477 |
-
args = parser.parse_args()
|
478 |
-
|
479 |
-
launch_kwargs = {}
|
480 |
-
launch_kwargs['server_name'] = args.listen
|
481 |
-
|
482 |
-
if args.username and args.password:
|
483 |
-
launch_kwargs['auth'] = (args.username, args.password)
|
484 |
-
if args.server_port:
|
485 |
-
launch_kwargs['server_port'] = args.server_port
|
486 |
-
if args.inbrowser:
|
487 |
-
launch_kwargs['inbrowser'] = args.inbrowser
|
488 |
-
if args.share:
|
489 |
-
# launch_kwargs['share'] = args.share
|
490 |
-
launch_kwargs['share'] = True
|
491 |
-
|
492 |
-
global USE_DIFFUSION
|
493 |
-
# Show the interface
|
494 |
-
if IS_BATCHED:
|
495 |
-
USE_DIFFUSION = False
|
496 |
-
ui_batched(launch_kwargs)
|
497 |
-
# ui_full(launch_kwargs)
|
498 |
-
else:
|
499 |
-
# Space > https://huggingface.co/spaces/MWire/zest-2023
|
500 |
-
USE_DIFFUSION = False
|
501 |
-
# ui_full(launch_kwargs)
|
502 |
-
ui_batched(launch_kwargs)
|
|
|
1 |
+
import gradio
|
2 |
+
|
3 |
+
def my_inference_function(name):
|
4 |
+
return "Hello " + name + "!"
|
5 |
+
|
6 |
+
gradio_interface = gradio.Interface(
|
7 |
+
fn=my_inference_function,
|
8 |
+
inputs="text",
|
9 |
+
outputs="text",
|
10 |
+
examples=[
|
11 |
+
["Jill"],
|
12 |
+
["Sam"]
|
13 |
+
],
|
14 |
+
title="REST API with Gradio and Huggingface Spaces",
|
15 |
+
description="This is a demo of how to build an AI powered REST API with Gradio and Huggingface Spaces – for free! Based on [this article](https://www.tomsoderlund.com/ai/building-ai-powered-rest-api). See the **Use via API** link at the bottom of this page.",
|
16 |
+
article="Test 2023"
|
17 |
+
)
|
18 |
+
|
19 |
+
gradio_interface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app_full.py
ADDED
@@ -0,0 +1,502 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
# Updated to account for UI changes from https://github.com/rkfg/audiocraft/blob/long/app.py
|
8 |
+
# also released under the MIT license.
|
9 |
+
|
10 |
+
import argparse
|
11 |
+
from concurrent.futures import ProcessPoolExecutor
|
12 |
+
import os
|
13 |
+
from pathlib import Path
|
14 |
+
import subprocess as sp
|
15 |
+
from tempfile import NamedTemporaryFile
|
16 |
+
import time
|
17 |
+
import typing as tp
|
18 |
+
import warnings
|
19 |
+
|
20 |
+
import torch
|
21 |
+
import gradio as gr
|
22 |
+
|
23 |
+
from audiocraft.data.audio_utils import convert_audio
|
24 |
+
from audiocraft.data.audio import audio_write
|
25 |
+
from audiocraft.models import MusicGen, MultiBandDiffusion
|
26 |
+
|
27 |
+
|
28 |
+
MODEL = None # Last used model
|
29 |
+
IS_BATCHED = "facebook/MusicGen" in os.environ.get('SPACE_ID', '')
|
30 |
+
print(IS_BATCHED)
|
31 |
+
MAX_BATCH_SIZE = 12
|
32 |
+
BATCHED_DURATION = 15
|
33 |
+
INTERRUPTING = False
|
34 |
+
MBD = None
|
35 |
+
# We have to wrap subprocess call to clean a bit the log when using gr.make_waveform
|
36 |
+
_old_call = sp.call
|
37 |
+
|
38 |
+
|
39 |
+
def _call_nostderr(*args, **kwargs):
|
40 |
+
# Avoid ffmpeg vomiting on the logs.
|
41 |
+
kwargs['stderr'] = sp.DEVNULL
|
42 |
+
kwargs['stdout'] = sp.DEVNULL
|
43 |
+
_old_call(*args, **kwargs)
|
44 |
+
|
45 |
+
|
46 |
+
sp.call = _call_nostderr
|
47 |
+
# Preallocating the pool of processes.
|
48 |
+
pool = ProcessPoolExecutor(4)
|
49 |
+
pool.__enter__()
|
50 |
+
|
51 |
+
|
52 |
+
def interrupt():
|
53 |
+
global INTERRUPTING
|
54 |
+
INTERRUPTING = True
|
55 |
+
|
56 |
+
|
57 |
+
class FileCleaner:
|
58 |
+
def __init__(self, file_lifetime: float = 3600):
|
59 |
+
self.file_lifetime = file_lifetime
|
60 |
+
self.files = []
|
61 |
+
|
62 |
+
def add(self, path: tp.Union[str, Path]):
|
63 |
+
self._cleanup()
|
64 |
+
self.files.append((time.time(), Path(path)))
|
65 |
+
|
66 |
+
def _cleanup(self):
|
67 |
+
now = time.time()
|
68 |
+
for time_added, path in list(self.files):
|
69 |
+
if now - time_added > self.file_lifetime:
|
70 |
+
if path.exists():
|
71 |
+
path.unlink()
|
72 |
+
self.files.pop(0)
|
73 |
+
else:
|
74 |
+
break
|
75 |
+
|
76 |
+
|
77 |
+
file_cleaner = FileCleaner()
|
78 |
+
|
79 |
+
|
80 |
+
|
81 |
+
def make_waveform(*args, **kwargs):
|
82 |
+
# Further remove some warnings.
|
83 |
+
be = time.time()
|
84 |
+
with warnings.catch_warnings():
|
85 |
+
warnings.simplefilter('ignore')
|
86 |
+
out = gr.make_waveform(*args, **kwargs)
|
87 |
+
print("Make a video took", time.time() - be)
|
88 |
+
return out
|
89 |
+
|
90 |
+
|
91 |
+
|
92 |
+
# write a similar function to make_waveform, but for video generated using an image with ans aspect ration of 16:9
|
93 |
+
|
94 |
+
def make_video(*args, **kwargs):
|
95 |
+
# Further remove some warnings.
|
96 |
+
be = time.time()
|
97 |
+
with warnings.catch_warnings():
|
98 |
+
warnings.simplefilter('ignore')
|
99 |
+
out = gr.make_video(*args, **kwargs)
|
100 |
+
print("Make a video took", time.time() - be)
|
101 |
+
return out
|
102 |
+
|
103 |
+
# write make video functions for other aspect ratios and use ffmpeg to combine them into a single video
|
104 |
+
|
105 |
+
|
106 |
+
|
107 |
+
|
108 |
+
# def load_model(version='facebook/musicgen-melody'):
|
109 |
+
def load_model(version='facebook/musicgen-small'):
|
110 |
+
global MODEL
|
111 |
+
print("Loading model", version)
|
112 |
+
if MODEL is None or MODEL.name != version:
|
113 |
+
MODEL = MusicGen.get_pretrained(version)
|
114 |
+
|
115 |
+
|
116 |
+
def load_diffusion():
|
117 |
+
global MBD
|
118 |
+
if MBD is None:
|
119 |
+
print("loading MBD")
|
120 |
+
MBD = MultiBandDiffusion.get_mbd_musicgen()
|
121 |
+
|
122 |
+
|
123 |
+
def _do_predictions(texts, melodies, duration, progress=False, **gen_kwargs):
|
124 |
+
MODEL.set_generation_params(duration=duration, **gen_kwargs)
|
125 |
+
print("new batch", len(texts), texts, [
|
126 |
+
None if m is None else (m[0], m[1].shape) for m in melodies])
|
127 |
+
be = time.time()
|
128 |
+
processed_melodies = []
|
129 |
+
target_sr = 32000
|
130 |
+
target_ac = 1
|
131 |
+
for melody in melodies:
|
132 |
+
if melody is None:
|
133 |
+
processed_melodies.append(None)
|
134 |
+
else:
|
135 |
+
sr, melody = melody[0], torch.from_numpy(
|
136 |
+
melody[1]).to(MODEL.device).float().t()
|
137 |
+
if melody.dim() == 1:
|
138 |
+
melody = melody[None]
|
139 |
+
melody = melody[..., :int(sr * duration)]
|
140 |
+
melody = convert_audio(melody, sr, target_sr, target_ac)
|
141 |
+
processed_melodies.append(melody)
|
142 |
+
|
143 |
+
if any(m is not None for m in processed_melodies):
|
144 |
+
outputs = MODEL.generate_with_chroma(
|
145 |
+
descriptions=texts,
|
146 |
+
melody_wavs=processed_melodies,
|
147 |
+
melody_sample_rate=target_sr,
|
148 |
+
progress=progress,
|
149 |
+
return_tokens=USE_DIFFUSION
|
150 |
+
)
|
151 |
+
else:
|
152 |
+
outputs = MODEL.generate(
|
153 |
+
texts, progress=progress, return_tokens=USE_DIFFUSION)
|
154 |
+
if USE_DIFFUSION:
|
155 |
+
outputs_diffusion = MBD.tokens_to_wav(outputs[1])
|
156 |
+
outputs = torch.cat([outputs[0], outputs_diffusion], dim=0)
|
157 |
+
outputs = outputs.detach().cpu().float()
|
158 |
+
# return outputs
|
159 |
+
pending_videos = []
|
160 |
+
out_wavs = []
|
161 |
+
for output in outputs:
|
162 |
+
with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file:
|
163 |
+
audio_write(
|
164 |
+
file.name, output, MODEL.sample_rate, strategy="loudness",
|
165 |
+
loudness_headroom_db=16, loudness_compressor=True, add_suffix=False)
|
166 |
+
pending_videos.append(pool.submit(make_waveform, file.name))
|
167 |
+
# pending_videos.append(pool.submit(make_video, file.name))
|
168 |
+
out_wavs.append(file.name)
|
169 |
+
file_cleaner.add(file.name)
|
170 |
+
out_videos = [pending_video.result() for pending_video in pending_videos]
|
171 |
+
for video in out_videos:
|
172 |
+
file_cleaner.add(video)
|
173 |
+
print("batch finished", len(texts), time.time() - be)
|
174 |
+
print("Tempfiles currently stored: ", len(file_cleaner.files))
|
175 |
+
# here I could ipload this to youtube music
|
176 |
+
# return out_wavs
|
177 |
+
return out_videos, out_wavs
|
178 |
+
|
179 |
+
|
180 |
+
def predict_batched(texts, melodies):
|
181 |
+
max_text_length = 512
|
182 |
+
texts = [text[:max_text_length] for text in texts]
|
183 |
+
load_model('facebook/musicgen-small')
|
184 |
+
res = _do_predictions(texts, melodies, BATCHED_DURATION)
|
185 |
+
return res
|
186 |
+
|
187 |
+
|
188 |
+
def predict_full(model, decoder, text, melody, duration, topk, topp, temperature, cfg_coef, progress=gr.Progress()):
|
189 |
+
global INTERRUPTING
|
190 |
+
global USE_DIFFUSION
|
191 |
+
INTERRUPTING = False
|
192 |
+
if temperature < 0:
|
193 |
+
raise gr.Error("Temperature must be >= 0.")
|
194 |
+
if topk < 0:
|
195 |
+
raise gr.Error("Topk must be non-negative.")
|
196 |
+
if topp < 0:
|
197 |
+
raise gr.Error("Topp must be non-negative.")
|
198 |
+
|
199 |
+
topk = int(topk)
|
200 |
+
if decoder == "MultiBand_Diffusion":
|
201 |
+
USE_DIFFUSION = True
|
202 |
+
load_diffusion()
|
203 |
+
else:
|
204 |
+
USE_DIFFUSION = False
|
205 |
+
load_model(model)
|
206 |
+
|
207 |
+
def _progress(generated, to_generate):
|
208 |
+
progress((min(generated, to_generate), to_generate))
|
209 |
+
if INTERRUPTING:
|
210 |
+
raise gr.Error("Interrupted.")
|
211 |
+
MODEL.set_custom_progress_callback(_progress)
|
212 |
+
|
213 |
+
videos, wavs = _do_predictions(
|
214 |
+
[text], [melody], duration, progress=True,
|
215 |
+
top_k=topk, top_p=topp, temperature=temperature, cfg_coef=cfg_coef)
|
216 |
+
if USE_DIFFUSION:
|
217 |
+
return videos[0], wavs[0], videos[1], wavs[1]
|
218 |
+
return videos[0], wavs[0], None, None
|
219 |
+
|
220 |
+
|
221 |
+
def toggle_audio_src(choice):
|
222 |
+
if choice == "mic":
|
223 |
+
return gr.update(source="microphone", value=None, label="Microphone")
|
224 |
+
else:
|
225 |
+
return gr.update(source="upload", value=None, label="File")
|
226 |
+
|
227 |
+
|
228 |
+
def toggle_diffusion(choice):
|
229 |
+
if choice == "MultiBand_Diffusion":
|
230 |
+
return [gr.update(visible=True)] * 2
|
231 |
+
else:
|
232 |
+
return [gr.update(visible=False)] * 2
|
233 |
+
|
234 |
+
|
235 |
+
def ui_full(launch_kwargs):
|
236 |
+
with gr.Blocks() as interface:
|
237 |
+
gr.Markdown(
|
238 |
+
"""
|
239 |
+
# MusicGen
|
240 |
+
This is your private demo for [MusicGen](https://github.com/facebookresearch/audiocraft),
|
241 |
+
a simple and controllable model for music generation
|
242 |
+
presented at: ["Simple and Controllable Music Generation"](https://huggingface.co/papers/2306.05284)
|
243 |
+
"""
|
244 |
+
)
|
245 |
+
with gr.Row():
|
246 |
+
with gr.Column():
|
247 |
+
with gr.Row():
|
248 |
+
text = gr.Text(
|
249 |
+
label="Input Text", value="Chill and relaxing downtempo for the shower", interactive=True)
|
250 |
+
with gr.Column():
|
251 |
+
radio = gr.Radio(["file", "mic"], value="file",
|
252 |
+
label="Condition on a melody (optional) File or Mic")
|
253 |
+
melody = gr.Audio(source="upload", type="numpy", label="File",
|
254 |
+
interactive=True, elem_id="melody-input")
|
255 |
+
with gr.Row():
|
256 |
+
submit = gr.Button("Submit")
|
257 |
+
# Adapted from https://github.com/rkfg/audiocraft/blob/long/app.py, MIT license.
|
258 |
+
_ = gr.Button("Interrupt").click(fn=interrupt, queue=False)
|
259 |
+
with gr.Row():
|
260 |
+
model = gr.Radio(["facebook/musicgen-melody", "facebook/musicgen-medium", "facebook/musicgen-small",
|
261 |
+
"facebook/musicgen-large"],
|
262 |
+
label="Model", value="facebook/musicgen-small", interactive=True)
|
263 |
+
with gr.Row():
|
264 |
+
decoder = gr.Radio(["Default", "MultiBand_Diffusion"],
|
265 |
+
label="Decoder", value="Default", interactive=True)
|
266 |
+
with gr.Row():
|
267 |
+
duration = gr.Slider(
|
268 |
+
minimum=1, maximum=120, value=20, label="Duration", interactive=True)
|
269 |
+
with gr.Row():
|
270 |
+
topk = gr.Number(label="Top-k", value=250,
|
271 |
+
interactive=True)
|
272 |
+
topp = gr.Number(label="Top-p", value=0, interactive=True)
|
273 |
+
temperature = gr.Number(
|
274 |
+
label="Temperature", value=1.0, interactive=True)
|
275 |
+
cfg_coef = gr.Number(
|
276 |
+
label="Classifier Free Guidance", value=3.0, interactive=True)
|
277 |
+
with gr.Column():
|
278 |
+
output = gr.Video(label="Generated Music")
|
279 |
+
audio_output = gr.Audio(
|
280 |
+
label="Generated Music (wav)", type='filepath')
|
281 |
+
diffusion_output = gr.Video(
|
282 |
+
label="MultiBand Diffusion Decoder")
|
283 |
+
audio_diffusion = gr.Audio(
|
284 |
+
label="MultiBand Diffusion Decoder (wav)", type='filepath')
|
285 |
+
submit.click(toggle_diffusion, decoder, [diffusion_output, audio_diffusion], queue=False,
|
286 |
+
show_progress=False, api_name="generate").then(predict_full, inputs=[model, decoder, text, melody, duration, topk, topp,
|
287 |
+
temperature, cfg_coef],
|
288 |
+
outputs=[output, audio_output, diffusion_output, audio_diffusion])
|
289 |
+
radio.change(toggle_audio_src, radio, [
|
290 |
+
melody], queue=False, show_progress=False)
|
291 |
+
|
292 |
+
gr.Examples(
|
293 |
+
fn=predict_full,
|
294 |
+
examples=[
|
295 |
+
[
|
296 |
+
"An 80s driving pop song with heavy drums and synth pads in the background",
|
297 |
+
"./assets/bach.mp3",
|
298 |
+
"facebook/musicgen-melody",
|
299 |
+
"Default"
|
300 |
+
],
|
301 |
+
[
|
302 |
+
"90s rock song with electric guitar and heavy drums",
|
303 |
+
None,
|
304 |
+
"facebook/musicgen-medium",
|
305 |
+
"Default"
|
306 |
+
],
|
307 |
+
[
|
308 |
+
"a light and cheerly EDM track, with syncopated drums, aery pads, and strong emotions",
|
309 |
+
"./assets/bach.mp3",
|
310 |
+
"facebook/musicgen-melody",
|
311 |
+
"Default"
|
312 |
+
],
|
313 |
+
[
|
314 |
+
"lofi slow bpm electro chill with organic samples",
|
315 |
+
None,
|
316 |
+
"facebook/musicgen-medium",
|
317 |
+
"Default"
|
318 |
+
],
|
319 |
+
[
|
320 |
+
"Punk rock with loud drum and power guitar",
|
321 |
+
None,
|
322 |
+
"facebook/musicgen-medium",
|
323 |
+
"MultiBand_Diffusion"
|
324 |
+
],
|
325 |
+
],
|
326 |
+
inputs=[text, melody, model, decoder],
|
327 |
+
outputs=[output]
|
328 |
+
)
|
329 |
+
gr.Markdown(
|
330 |
+
"""
|
331 |
+
### More details
|
332 |
+
|
333 |
+
The model will generate a short music extract based on the description you provided.
|
334 |
+
The model can generate up to 30 seconds of audio in one pass. It is now possible
|
335 |
+
to extend the generation by feeding back the end of the previous chunk of audio.
|
336 |
+
This can take a long time, and the model might lose consistency. The model might also
|
337 |
+
decide at arbitrary positions that the song ends.
|
338 |
+
|
339 |
+
**WARNING:** Choosing long durations will take a long time to generate (2min might take ~10min).
|
340 |
+
An overlap of 12 seconds is kept with the previously generated chunk, and 18 "new" seconds
|
341 |
+
are generated each time.
|
342 |
+
|
343 |
+
We present 4 model variations:
|
344 |
+
1. facebook/musicgen-melody -- a music generation model capable of generating music condition
|
345 |
+
on text and melody inputs. **Note**, you can also use text only.
|
346 |
+
2. facebook/musicgen-small -- a 300M transformer decoder conditioned on text only.
|
347 |
+
3. facebook/musicgen-medium -- a 1.5B transformer decoder conditioned on text only.
|
348 |
+
4. facebook/musicgen-large -- a 3.3B transformer decoder conditioned on text only.
|
349 |
+
|
350 |
+
We also present two way of decoding the audio tokens
|
351 |
+
1. Use the default GAN based compression model
|
352 |
+
2. Use MultiBand Diffusion from (paper linknano )
|
353 |
+
|
354 |
+
When using `facebook/musicgen-melody`, you can optionally provide a reference audio from
|
355 |
+
which a broad melody will be extracted. The model will then try to follow both
|
356 |
+
the description and melody provided.
|
357 |
+
|
358 |
+
You can also use your own GPU or a Google Colab by following the instructions on our repo.
|
359 |
+
See [github.com/facebookresearch/audiocraft](https://github.com/facebookresearch/audiocraft)
|
360 |
+
for more details.
|
361 |
+
"""
|
362 |
+
)
|
363 |
+
|
364 |
+
interface.queue().launch(**launch_kwargs)
|
365 |
+
# interface.queue().launch(**launch_kwargs, share=True)
|
366 |
+
|
367 |
+
|
368 |
+
def ui_batched(launch_kwargs):
|
369 |
+
with gr.Blocks() as demo:
|
370 |
+
gr.Markdown(
|
371 |
+
"""
|
372 |
+
# MusicGen
|
373 |
+
|
374 |
+
This is the demo for [MusicGen](https://github.com/facebookresearch/audiocraft),
|
375 |
+
a simple and controllable model for music generation
|
376 |
+
presented at: ["Simple and Controllable Music Generation"](https://huggingface.co/papers/2306.05284).
|
377 |
+
<br/>
|
378 |
+
<a href="https://huggingface.co/spaces/facebook/MusicGen?duplicate=true"
|
379 |
+
style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank">
|
380 |
+
<img style="margin-bottom: 0em;display: inline;margin-top: -.25em;"
|
381 |
+
src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
|
382 |
+
for longer sequences, more control and no queue.</p>
|
383 |
+
"""
|
384 |
+
)
|
385 |
+
with gr.Row():
|
386 |
+
with gr.Column():
|
387 |
+
with gr.Row():
|
388 |
+
text = gr.Text(label="Describe your music",
|
389 |
+
value="Chill and relaxing downtempo for the shower", lines=2, interactive=True)
|
390 |
+
with gr.Column():
|
391 |
+
radio = gr.Radio(["file", "mic"], value="file",
|
392 |
+
label="Condition on a melody (optional) File or Mic")
|
393 |
+
melody = gr.Audio(source="upload", type="numpy", label="File",
|
394 |
+
interactive=True, elem_id="melody-input")
|
395 |
+
with gr.Row():
|
396 |
+
submit = gr.Button("Generate")
|
397 |
+
with gr.Column():
|
398 |
+
output = gr.Video(label="Generated Music")
|
399 |
+
audio_output = gr.Audio(
|
400 |
+
label="Generated Music (wav)", type='filepath')
|
401 |
+
submit.click(predict_batched, inputs=[text, melody],
|
402 |
+
outputs=[output, audio_output], batch=True, max_batch_size=MAX_BATCH_SIZE, api_name="create")
|
403 |
+
radio.change(toggle_audio_src, radio, [
|
404 |
+
melody], queue=False, show_progress=False)
|
405 |
+
# gr.Examples(
|
406 |
+
# fn=predict_batched,
|
407 |
+
# examples=[
|
408 |
+
# [
|
409 |
+
# "An 80s driving pop song with heavy drums and synth pads in the background",
|
410 |
+
# "./assets/bach.mp3",
|
411 |
+
# ],
|
412 |
+
# [
|
413 |
+
# "A cheerful country song with acoustic guitars",
|
414 |
+
# "./assets/bolero_ravel.mp3",
|
415 |
+
# ],
|
416 |
+
# [
|
417 |
+
# "90s rock song with electric guitar and heavy drums",
|
418 |
+
# None,
|
419 |
+
# ],
|
420 |
+
# [
|
421 |
+
# "a light and cheerly EDM track, with syncopated drums, aery pads, and strong emotions bpm: 130",
|
422 |
+
# "./assets/bach.mp3",
|
423 |
+
# ],
|
424 |
+
# [
|
425 |
+
# "lofi slow bpm electro chill with organic samples",
|
426 |
+
# None,
|
427 |
+
# ],
|
428 |
+
# ],
|
429 |
+
# inputs=[text, melody],
|
430 |
+
# outputs=[output]
|
431 |
+
# )
|
432 |
+
gr.Markdown("""
|
433 |
+
### More details
|
434 |
+
|
435 |
+
The model will generate 12 seconds of audio based on the description you provided.
|
436 |
+
You can optionally provide a reference audio from which a broad melody will be extracted.
|
437 |
+
The model will then try to follow both the description and melody provided.
|
438 |
+
All samples are generated with the `melody` model.
|
439 |
+
|
440 |
+
You can also use your own GPU or a Google Colab by following the instructions on our repo.
|
441 |
+
|
442 |
+
See [github.com/facebookresearch/audiocraft](https://github.com/facebookresearch/audiocraft)
|
443 |
+
for more details.
|
444 |
+
""")
|
445 |
+
|
446 |
+
demo.queue().launch(**launch_kwargs)
|
447 |
+
# demo.queue(max_size=8 * 4).launch(**launch_kwargs, share=True)
|
448 |
+
|
449 |
+
|
450 |
+
if __name__ == "__main__":
|
451 |
+
parser = argparse.ArgumentParser()
|
452 |
+
parser.add_argument(
|
453 |
+
'--listen',
|
454 |
+
type=str,
|
455 |
+
default='0.0.0.0' if 'SPACE_ID' in os.environ else '127.0.0.1',
|
456 |
+
help='IP to listen on for connections to Gradio',
|
457 |
+
)
|
458 |
+
parser.add_argument(
|
459 |
+
'--username', type=str, default='', help='Username for authentication'
|
460 |
+
)
|
461 |
+
parser.add_argument(
|
462 |
+
'--password', type=str, default='', help='Password for authentication'
|
463 |
+
)
|
464 |
+
parser.add_argument(
|
465 |
+
'--server_port',
|
466 |
+
type=int,
|
467 |
+
default=0,
|
468 |
+
help='Port to run the server listener on',
|
469 |
+
)
|
470 |
+
parser.add_argument(
|
471 |
+
'--inbrowser', action='store_true', help='Open in browser'
|
472 |
+
)
|
473 |
+
parser.add_argument(
|
474 |
+
'--share', action='store_true', help='Share the gradio UI'
|
475 |
+
)
|
476 |
+
|
477 |
+
args = parser.parse_args()
|
478 |
+
|
479 |
+
launch_kwargs = {}
|
480 |
+
launch_kwargs['server_name'] = args.listen
|
481 |
+
|
482 |
+
if args.username and args.password:
|
483 |
+
launch_kwargs['auth'] = (args.username, args.password)
|
484 |
+
if args.server_port:
|
485 |
+
launch_kwargs['server_port'] = args.server_port
|
486 |
+
if args.inbrowser:
|
487 |
+
launch_kwargs['inbrowser'] = args.inbrowser
|
488 |
+
if args.share:
|
489 |
+
# launch_kwargs['share'] = args.share
|
490 |
+
launch_kwargs['share'] = True
|
491 |
+
|
492 |
+
global USE_DIFFUSION
|
493 |
+
# Show the interface
|
494 |
+
if IS_BATCHED:
|
495 |
+
USE_DIFFUSION = False
|
496 |
+
ui_batched(launch_kwargs)
|
497 |
+
# ui_full(launch_kwargs)
|
498 |
+
else:
|
499 |
+
# Space > https://huggingface.co/spaces/MWire/zest-2023
|
500 |
+
USE_DIFFUSION = False
|
501 |
+
# ui_full(launch_kwargs)
|
502 |
+
ui_batched(launch_kwargs)
|