Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,360 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
def respond(
|
11 |
-
message,
|
12 |
-
history: list[tuple[str, str]],
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
-
for val in history:
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
-
|
28 |
-
response = ""
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
-
)
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
if __name__ == "__main__":
|
64 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
from prophet import Prophet
|
5 |
+
import plotly.graph_objs as go
|
6 |
+
import requests
|
7 |
+
from sklearn.ensemble import RandomForestClassifier
|
8 |
+
from textblob import TextBlob
|
9 |
+
import yfinance as yf
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
# --- Constants ---
|
12 |
+
CRYPTO_SYMBOLS = ["BTC-USD", "ETH-USD", "LTC-USD", "XRP-USD"]
|
13 |
+
STOCK_SYMBOLS = ["AAPL", "MSFT", "GOOGL", "AMZN"]
|
14 |
+
INTERVAL_OPTIONS = ["1h", "1d", "1wk"]
|
15 |
+
DEFAULT_FORECAST_STEPS = 24
|
16 |
+
DEFAULT_DAILY_SEASONALITY = True
|
17 |
+
DEFAULT_WEEKLY_SEASONALITY = True
|
18 |
+
DEFAULT_YEARLY_SEASONALITY = False
|
19 |
+
DEFAULT_SEASONALITY_MODE = "additive"
|
20 |
+
DEFAULT_CHANGEPOINT_PRIOR_SCALE = 0.05
|
21 |
+
RANDOM_FOREST_PARAMS = {
|
22 |
+
"n_estimators": 100,
|
23 |
+
"max_depth": 10,
|
24 |
+
"random_state": 42
|
25 |
+
}
|
26 |
+
|
27 |
+
# --- Data Fetching Functions ---
|
28 |
+
def fetch_crypto_data(symbol, interval="1h", limit=100):
|
29 |
+
try:
|
30 |
+
ticker = yf.Ticker(symbol)
|
31 |
+
if interval == "1h":
|
32 |
+
period = "1d"
|
33 |
+
df = ticker.history(period=period, interval="1h")
|
34 |
+
elif interval == "1d":
|
35 |
+
df = ticker.history(period="1y", interval=interval)
|
36 |
+
elif interval == "1wk":
|
37 |
+
df = ticker.history(period="5y", interval=interval)
|
38 |
+
else:
|
39 |
+
raise ValueError("Invalid interval for yfinance.")
|
40 |
+
if df.empty:
|
41 |
+
raise Exception("No data returned from yfinance.")
|
42 |
+
df.reset_index(inplace=True)
|
43 |
+
df.rename(columns={"Datetime": "timestamp", "Open": "open", "High": "high", "Low": "low", "Close": "close", "Volume": "volume"}, inplace=True)
|
44 |
+
df = df[["timestamp", "open", "high", "low", "close", "volume"]]
|
45 |
+
return df.dropna()
|
46 |
+
except Exception as e:
|
47 |
+
raise Exception(f"Error fetching crypto data from yfinance: {e}")
|
48 |
+
|
49 |
+
def fetch_stock_data(symbol, interval="1d"):
|
50 |
+
try:
|
51 |
+
ticker = yf.Ticker(symbol)
|
52 |
+
df = ticker.history(period="1y", interval=interval)
|
53 |
+
if df.empty:
|
54 |
+
raise Exception("No data returned from yfinance.")
|
55 |
+
df.reset_index(inplace=True)
|
56 |
+
df.rename(columns={"Date": "timestamp", "Open": "open", "High": "high", "Low": "low", "Close": "close", "Volume": "volume"}, inplace=True)
|
57 |
+
df = df[["timestamp", "open", "high", "low", "close", "volume"]]
|
58 |
+
return df.dropna()
|
59 |
+
except Exception as e:
|
60 |
+
raise Exception(f"Error fetching stock data from yfinance: {e}")
|
61 |
+
|
62 |
+
def fetch_sentiment_data(keyword):
|
63 |
+
try:
|
64 |
+
tweets = [
|
65 |
+
f"{keyword} is going to moon!",
|
66 |
+
f"I hate {keyword}, it's trash!",
|
67 |
+
f"{keyword} is amazing!"
|
68 |
+
]
|
69 |
+
sentiments = [TextBlob(tweet).sentiment.polarity for tweet in tweets]
|
70 |
+
return sum(sentiments) / len(sentiments) if sentiments else 0
|
71 |
+
except Exception as e:
|
72 |
+
print(f"Sentiment analysis error: {e}")
|
73 |
+
return 0
|
74 |
+
|
75 |
+
# --- Technical Analysis Functions ---
|
76 |
+
def calculate_technical_indicators(df):
|
77 |
+
if df.empty:
|
78 |
+
return df
|
79 |
+
|
80 |
+
delta = df['close'].diff()
|
81 |
+
gain = (delta.where(delta > 0, 0)).rolling(window=14).mean()
|
82 |
+
loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean()
|
83 |
+
rs = gain / loss
|
84 |
+
df['RSI'] = 100 - (100 / (1 + rs))
|
85 |
+
|
86 |
+
exp1 = df['close'].ewm(span=12, adjust=False).mean()
|
87 |
+
exp2 = df['close'].ewm(span=26, adjust=False).mean()
|
88 |
+
df['MACD'] = exp1 - exp2
|
89 |
+
df['Signal_Line'] = df['MACD'].ewm(span=9, adjust=False).mean()
|
90 |
+
|
91 |
+
df['MA20'] = df['close'].rolling(window=20).mean()
|
92 |
+
df['BB_upper'] = df['MA20'] + 2 * df['close'].rolling(window=20).std()
|
93 |
+
df['BB_lower'] = df['MA20'] - 2 * df['close'].rolling(window=20).std()
|
94 |
+
|
95 |
+
return df
|
96 |
+
|
97 |
+
def create_technical_charts(df):
|
98 |
+
if df.empty:
|
99 |
+
return None, None, None
|
100 |
+
|
101 |
+
fig1 = go.Figure()
|
102 |
+
fig1.add_trace(go.Candlestick(
|
103 |
+
x=df['timestamp'],
|
104 |
+
open=df['open'],
|
105 |
+
high=df['high'],
|
106 |
+
low=df['low'],
|
107 |
+
close=df['close'],
|
108 |
+
name='Price'
|
109 |
+
))
|
110 |
+
fig1.add_trace(go.Scatter(x=df['timestamp'], y=df['BB_upper'], name='Upper BB', line=dict(color='gray', dash='dash')))
|
111 |
+
fig1.add_trace(go.Scatter(x=df['timestamp'], y=df['BB_lower'], name='Lower BB', line=dict(color='gray', dash='dash')))
|
112 |
+
fig1.update_layout(title='Price and Bollinger Bands', xaxis_title='Date', yaxis_title='Price')
|
113 |
+
|
114 |
+
fig2 = go.Figure()
|
115 |
+
fig2.add_trace(go.Scatter(x=df['timestamp'], y=df['RSI'], name='RSI'))
|
116 |
+
fig2.add_hline(y=70, line_dash="dash", line_color="red")
|
117 |
+
fig2.add_hline(y=30, line_dash="dash", line_color="green")
|
118 |
+
fig2.update_layout(title='RSI Indicator', xaxis_title='Date', yaxis_title='RSI')
|
119 |
+
|
120 |
+
fig3 = go.Figure()
|
121 |
+
fig3.add_trace(go.Scatter(x=df['timestamp'], y=df['MACD'], name='MACD'))
|
122 |
+
fig3.add_trace(go.Scatter(x=df['timestamp'], y=df['Signal_Line'], name='Signal Line'))
|
123 |
+
fig3.update_layout(title='MACD', xaxis_title='Date', yaxis_title='Value')
|
124 |
+
|
125 |
+
return fig1, fig2, fig3
|
126 |
+
|
127 |
+
# --- Prophet Forecasting Functions ---
|
128 |
+
def prepare_data_for_prophet(df):
|
129 |
+
if df.empty:
|
130 |
+
return pd.DataFrame(columns=["ds", "y"])
|
131 |
+
df_prophet = df.rename(columns={"timestamp": "ds", "close": "y"})
|
132 |
+
return df_prophet[["ds", "y"]]
|
133 |
+
|
134 |
+
def prophet_forecast(df_prophet, periods=10, freq="h", daily_seasonality=False, weekly_seasonality=False, yearly_seasonality=False, seasonality_mode="additive", changepoint_prior_scale=0.05):
|
135 |
+
if df_prophet.empty:
|
136 |
+
return pd.DataFrame(), "No data for Prophet."
|
137 |
+
|
138 |
+
try:
|
139 |
+
model = Prophet(
|
140 |
+
daily_seasonality=daily_seasonality,
|
141 |
+
weekly_seasonality=weekly_seasonality,
|
142 |
+
yearly_seasonality=yearly_seasonality,
|
143 |
+
seasonality_mode=seasonality_mode,
|
144 |
+
changepoint_prior_scale=changepoint_prior_scale,
|
145 |
+
)
|
146 |
+
model.fit(df_prophet)
|
147 |
+
future = model.make_future_dataframe(periods=periods, freq=freq)
|
148 |
+
forecast = model.predict(future)
|
149 |
+
return forecast, ""
|
150 |
+
except Exception as e:
|
151 |
+
return pd.DataFrame(), f"Forecast error: {e}"
|
152 |
+
|
153 |
+
def prophet_wrapper(df_prophet, forecast_steps, freq, daily_seasonality, weekly_seasonality, yearly_seasonality, seasonality_mode, changepoint_prior_scale):
|
154 |
+
if len(df_prophet) < 10:
|
155 |
+
return pd.DataFrame(), "Not enough data for forecasting (need >=10 rows)."
|
156 |
+
|
157 |
+
full_forecast, err = prophet_forecast(
|
158 |
+
df_prophet,
|
159 |
+
forecast_steps,
|
160 |
+
freq,
|
161 |
+
daily_seasonality,
|
162 |
+
weekly_seasonality,
|
163 |
+
yearly_seasonality,
|
164 |
+
seasonality_mode,
|
165 |
+
changepoint_prior_scale,
|
166 |
+
)
|
167 |
+
if err:
|
168 |
+
return pd.DataFrame(), err
|
169 |
+
|
170 |
+
future_only = full_forecast.loc[len(df_prophet):, ["ds", "yhat", "yhat_lower", "yhat_upper"]]
|
171 |
+
return future_only, ""
|
172 |
+
|
173 |
+
def create_forecast_plot(forecast_df):
|
174 |
+
if forecast_df.empty:
|
175 |
+
return go.Figure()
|
176 |
+
|
177 |
+
fig = go.Figure()
|
178 |
+
fig.add_trace(go.Scatter(
|
179 |
+
x=forecast_df["ds"],
|
180 |
+
y=forecast_df["yhat"],
|
181 |
+
mode="lines",
|
182 |
+
name="Forecast",
|
183 |
+
line=dict(color="blue", width=2)
|
184 |
+
))
|
185 |
+
|
186 |
+
fig.add_trace(go.Scatter(
|
187 |
+
x=forecast_df["ds"],
|
188 |
+
y=forecast_df["yhat_lower"],
|
189 |
+
fill=None,
|
190 |
+
mode="lines",
|
191 |
+
line=dict(width=0),
|
192 |
+
showlegend=True,
|
193 |
+
name="Lower Bound"
|
194 |
+
))
|
195 |
+
|
196 |
+
fig.add_trace(go.Scatter(
|
197 |
+
x=forecast_df["ds"],
|
198 |
+
y=forecast_df["yhat_upper"],
|
199 |
+
fill="tonexty",
|
200 |
+
mode="lines",
|
201 |
+
line=dict(width=0),
|
202 |
+
name="Upper Bound"
|
203 |
+
))
|
204 |
+
|
205 |
+
fig.update_layout(
|
206 |
+
title="Price Forecast",
|
207 |
+
xaxis_title="Time",
|
208 |
+
yaxis_title="Price",
|
209 |
+
hovermode="x unified",
|
210 |
+
template="plotly_white",
|
211 |
+
)
|
212 |
+
return fig
|
213 |
+
|
214 |
+
# --- Model Training and Prediction ---
|
215 |
+
model = RandomForestClassifier(**RANDOM_FOREST_PARAMS)
|
216 |
+
|
217 |
+
def train_model(df):
|
218 |
+
if df.empty:
|
219 |
+
return
|
220 |
+
df["target"] = (df["close"].pct_change() > 0.05).astype(int)
|
221 |
+
features = df[["close", "volume"]].dropna()
|
222 |
+
target = df["target"].dropna()
|
223 |
+
if not features.empty and not target.empty:
|
224 |
+
model.fit(features, target)
|
225 |
+
else:
|
226 |
+
print("Not enough data for model training.")
|
227 |
+
|
228 |
+
def predict_growth(latest_data):
|
229 |
+
if not hasattr(model, 'estimators_') or len(model.estimators_) == 0:
|
230 |
+
return [0]
|
231 |
+
|
232 |
+
try:
|
233 |
+
prediction = model.predict(latest_data.reshape(1, -1))
|
234 |
+
return prediction
|
235 |
+
except Exception as e:
|
236 |
+
print(f"Prediction error: {e}")
|
237 |
+
return [0]
|
238 |
+
|
239 |
+
# --- Main Prediction and Display Function ---
|
240 |
+
def analyze_market(market_type, symbol, interval, forecast_steps, daily_seasonality, weekly_seasonality, yearly_seasonality, seasonality_mode, changepoint_prior_scale, sentiment_keyword=""):
|
241 |
+
df = pd.DataFrame()
|
242 |
+
error_message = ""
|
243 |
+
sentiment_score = 0
|
244 |
+
|
245 |
+
try:
|
246 |
+
if market_type == "Crypto":
|
247 |
+
df = fetch_crypto_data(symbol, interval=interval)
|
248 |
+
elif market_type == "Stock":
|
249 |
+
df = fetch_stock_data(symbol, interval=interval)
|
250 |
+
else:
|
251 |
+
error_message = "Invalid market type selected."
|
252 |
+
return None, None, None, None, None, "", error_message, 0
|
253 |
+
|
254 |
+
if sentiment_keyword:
|
255 |
+
sentiment_score = fetch_sentiment_data(sentiment_keyword)
|
256 |
+
except Exception as e:
|
257 |
+
error_message = f"Data Fetching Error: {e}"
|
258 |
+
return None, None, None, None, None, "", error_message, 0
|
259 |
+
|
260 |
+
if df.empty:
|
261 |
+
error_message = "No data fetched."
|
262 |
+
return None, None, None, None, None, "", error_message, 0
|
263 |
+
|
264 |
+
df["timestamp"] = pd.to_datetime(df["timestamp"])
|
265 |
+
numeric_cols = ["open", "high", "low", "close", "volume"]
|
266 |
+
df[numeric_cols] = df[numeric_cols].astype(float)
|
267 |
+
df = calculate_technical_indicators(df)
|
268 |
+
|
269 |
+
df_prophet = prepare_data_for_prophet(df)
|
270 |
+
freq = "h" if interval == "1h" or interval == "60min" else "d"
|
271 |
+
forecast_df, prophet_error = prophet_wrapper(
|
272 |
+
df_prophet,
|
273 |
+
forecast_steps,
|
274 |
+
freq,
|
275 |
+
daily_seasonality,
|
276 |
+
weekly_seasonality,
|
277 |
+
yearly_seasonality,
|
278 |
+
seasonality_mode,
|
279 |
+
changepoint_prior_scale,
|
280 |
+
)
|
281 |
+
|
282 |
+
if prophet_error:
|
283 |
+
error_message = f"Prophet Error: {prophet_error}"
|
284 |
+
return None, None, None, None, None, "", error_message, sentiment_score
|
285 |
+
|
286 |
+
forecast_plot = create_forecast_plot(forecast_df)
|
287 |
+
tech_plot, rsi_plot, macd_plot = create_technical_charts(df)
|
288 |
+
|
289 |
+
try:
|
290 |
+
train_model(df.copy())
|
291 |
+
if not df.empty:
|
292 |
+
latest_data = df[["close", "volume"]].iloc[-1].values
|
293 |
+
growth_prediction = predict_growth(latest_data)
|
294 |
+
growth_label = "Yes" if growth_prediction[0] == 1 else "No"
|
295 |
+
else:
|
296 |
+
growth_label = "N/A: Insufficient Data"
|
297 |
+
except Exception as e:
|
298 |
+
error_message = f"Model Error: {e}"
|
299 |
+
growth_label = "N/A"
|
300 |
+
|
301 |
+
forecast_df_display = forecast_df.loc[:, ["ds", "yhat", "yhat_lower", "yhat_upper"]].copy()
|
302 |
+
forecast_df_display.rename(columns={"ds": "Date", "yhat": "Forecast", "yhat_lower": "Lower Bound", "yhat_upper": "Upper Bound"}, inplace=True)
|
303 |
+
return forecast_plot, tech_plot, rsi_plot, macd_plot, forecast_df_display, growth_label, error_message, sentiment_score
|
304 |
+
|
305 |
+
# --- Gradio Interface ---
|
306 |
+
with gr.Blocks(theme=gr.themes.Base()) as demo:
|
307 |
+
gr.Markdown("# Market Analysis and Prediction")
|
308 |
+
|
309 |
+
with gr.Row():
|
310 |
+
with gr.Column():
|
311 |
+
market_type_dd = gr.Radio(label="Market Type", choices=["Crypto", "Stock"], value="Crypto")
|
312 |
+
symbol_dd = gr.Dropdown(label="Symbol", choices=CRYPTO_SYMBOLS, value="BTC-USD")
|
313 |
+
interval_dd = gr.Dropdown(label="Interval", choices=INTERVAL_OPTIONS, value="1h")
|
314 |
+
forecast_steps_slider = gr.Slider(label="Forecast Steps", minimum=1, maximum=100, value=DEFAULT_FORECAST_STEPS, step=1)
|
315 |
+
daily_box = gr.Checkbox(label="Daily Seasonality", value=DEFAULT_DAILY_SEASONALITY)
|
316 |
+
weekly_box = gr.Checkbox(label="Weekly Seasonality", value=DEFAULT_WEEKLY_SEASONALITY)
|
317 |
+
yearly_box = gr.Checkbox(label="Yearly Seasonality", value=DEFAULT_YEARLY_SEASONALITY)
|
318 |
+
seasonality_mode_dd = gr.Dropdown(label="Seasonality Mode", choices=["additive", "multiplicative"], value=DEFAULT_SEASONALITY_MODE)
|
319 |
+
changepoint_scale_slider = gr.Slider(label="Changepoint Prior Scale", minimum=0.01, maximum=1.0, step=0.01, value=DEFAULT_CHANGEPOINT_PRIOR_SCALE)
|
320 |
+
sentiment_keyword_txt = gr.Textbox(label="Sentiment Keyword (optional)")
|
321 |
+
|
322 |
+
with gr.Column():
|
323 |
+
forecast_plot = gr.Plot(label="Price Forecast")
|
324 |
+
with gr.Row():
|
325 |
+
tech_plot = gr.Plot(label="Technical Analysis")
|
326 |
+
rsi_plot = gr.Plot(label="RSI Indicator")
|
327 |
+
with gr.Row():
|
328 |
+
macd_plot = gr.Plot(label="MACD")
|
329 |
+
forecast_df = gr.Dataframe(label="Forecast Data", headers=["Date", "Forecast", "Lower Bound", "Upper Bound"])
|
330 |
+
growth_label_output = gr.Label(label="Explosive Growth Prediction")
|
331 |
+
sentiment_label_output = gr.Number(label="Sentiment Score")
|
332 |
+
|
333 |
+
def update_symbol_choices(market_type):
|
334 |
+
if market_type == "Crypto":
|
335 |
+
return gr.Dropdown(choices=CRYPTO_SYMBOLS, value="BTC-USD")
|
336 |
+
elif market_type == "Stock":
|
337 |
+
return gr.Dropdown(choices=STOCK_SYMBOLS, value="AAPL")
|
338 |
+
return gr.Dropdown(choices=[], value=None)
|
339 |
+
market_type_dd.change(fn=update_symbol_choices, inputs=[market_type_dd], outputs=[symbol_dd])
|
340 |
+
|
341 |
+
analyze_button = gr.Button("Analyze Market", variant="primary")
|
342 |
+
analyze_button.click(
|
343 |
+
fn=analyze_market,
|
344 |
+
inputs=[
|
345 |
+
market_type_dd,
|
346 |
+
symbol_dd,
|
347 |
+
interval_dd,
|
348 |
+
forecast_steps_slider,
|
349 |
+
daily_box,
|
350 |
+
weekly_box,
|
351 |
+
yearly_box,
|
352 |
+
seasonality_mode_dd,
|
353 |
+
changepoint_scale_slider,
|
354 |
+
sentiment_keyword_txt,
|
355 |
+
],
|
356 |
+
outputs=[forecast_plot, tech_plot, rsi_plot, macd_plot, forecast_df, growth_label_output, gr.Label(label="Error Message"), sentiment_label_output]
|
357 |
+
)
|
358 |
|
359 |
if __name__ == "__main__":
|
360 |
+
demo.launch()
|