import gradio as gr import pandas as pd import numpy as np from prophet import Prophet import plotly.graph_objs as go import requests from sklearn.ensemble import RandomForestClassifier from textblob import TextBlob import yfinance as yf import re # --- Constants --- CRYPTO_SYMBOLS = ["BTC-USD", "ETH-USD", "LTC-USD", "XRP-USD"] STOCK_SYMBOLS = ["AAPL", "MSFT", "GOOGL", "AMZN"] INTERVAL_OPTIONS = ["1h", "1d", "1wk"] DEFAULT_FORECAST_STEPS = 24 DEFAULT_DAILY_SEASONALITY = True DEFAULT_WEEKLY_SEASONALITY = True DEFAULT_YEARLY_SEASONALITY = False DEFAULT_SEASONALITY_MODE = "additive" DEFAULT_CHANGEPOINT_PRIOR_SCALE = 0.05 RANDOM_FOREST_PARAMS = { "n_estimators": 100, "max_depth": 10, "random_state": 42 } # --- Data Fetching Functions --- def fetch_crypto_data(symbol, interval="1h", limit=100): try: ticker = yf.Ticker(symbol) if interval == "1h": period = "1d" df = ticker.history(period=period, interval="1h") elif interval == "1d": df = ticker.history(period="1y", interval=interval) elif interval == "1wk": df = ticker.history(period="5y", interval=interval) else: raise ValueError("Invalid interval for yfinance.") if df.empty: raise Exception("No data returned from yfinance.") df.reset_index(inplace=True) df.rename(columns={"Datetime": "timestamp", "Open": "open", "High": "high", "Low": "low", "Close": "close", "Volume": "volume"}, inplace=True) df = df[["timestamp", "open", "high", "low", "close", "volume"]] return df.dropna() except Exception as e: raise Exception(f"Error fetching crypto data from yfinance: {e}") def fetch_stock_data(symbol, interval="1d"): try: ticker = yf.Ticker(symbol) df = ticker.history(period="1y", interval=interval) if df.empty: raise Exception("No data returned from yfinance.") df.reset_index(inplace=True) df.rename(columns={"Date": "timestamp", "Open": "open", "High": "high", "Low": "low", "Close": "close", "Volume": "volume"}, inplace=True) df = df[["timestamp", "open", "high", "low", "close", "volume"]] return df.dropna() except Exception as e: raise Exception(f"Error fetching stock data from yfinance: {e}") def fetch_sentiment_data(keyword): try: tweets = [ f"{keyword} is going to moon!", f"I hate {keyword}, it's trash!", f"{keyword} is amazing!" ] sentiments = [TextBlob(tweet).sentiment.polarity for tweet in tweets] return sum(sentiments) / len(sentiments) if sentiments else 0 except Exception as e: print(f"Sentiment analysis error: {e}") return 0 # --- Technical Analysis Functions --- def calculate_technical_indicators(df): if df.empty: return df delta = df['close'].diff() gain = (delta.where(delta > 0, 0)).rolling(window=14).mean() loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean() rs = gain / loss df['RSI'] = 100 - (100 / (1 + rs)) exp1 = df['close'].ewm(span=12, adjust=False).mean() exp2 = df['close'].ewm(span=26, adjust=False).mean() df['MACD'] = exp1 - exp2 df['Signal_Line'] = df['MACD'].ewm(span=9, adjust=False).mean() df['MA20'] = df['close'].rolling(window=20).mean() df['BB_upper'] = df['MA20'] + 2 * df['close'].rolling(window=20).std() df['BB_lower'] = df['MA20'] - 2 * df['close'].rolling(window=20).std() return df def create_technical_charts(df): if df.empty: return None, None, None fig1 = go.Figure() fig1.add_trace(go.Candlestick( x=df['timestamp'], open=df['open'], high=df['high'], low=df['low'], close=df['close'], name='Price' )) fig1.add_trace(go.Scatter(x=df['timestamp'], y=df['BB_upper'], name='Upper BB', line=dict(color='gray', dash='dash'))) fig1.add_trace(go.Scatter(x=df['timestamp'], y=df['BB_lower'], name='Lower BB', line=dict(color='gray', dash='dash'))) fig1.update_layout(title='Price and Bollinger Bands', xaxis_title='Date', yaxis_title='Price') fig2 = go.Figure() fig2.add_trace(go.Scatter(x=df['timestamp'], y=df['RSI'], name='RSI')) fig2.add_hline(y=70, line_dash="dash", line_color="red") fig2.add_hline(y=30, line_dash="dash", line_color="green") fig2.update_layout(title='RSI Indicator', xaxis_title='Date', yaxis_title='RSI') fig3 = go.Figure() fig3.add_trace(go.Scatter(x=df['timestamp'], y=df['MACD'], name='MACD')) fig3.add_trace(go.Scatter(x=df['timestamp'], y=df['Signal_Line'], name='Signal Line')) fig3.update_layout(title='MACD', xaxis_title='Date', yaxis_title='Value') return fig1, fig2, fig3 # --- Prophet Forecasting Functions --- def prepare_data_for_prophet(df): if df.empty: return pd.DataFrame(columns=["ds", "y"]) df_prophet = df.rename(columns={"timestamp": "ds", "close": "y"}) return df_prophet[["ds", "y"]] def prophet_forecast(df_prophet, periods=10, freq="h", daily_seasonality=False, weekly_seasonality=False, yearly_seasonality=False, seasonality_mode="additive", changepoint_prior_scale=0.05): if df_prophet.empty: return pd.DataFrame(), "No data for Prophet." try: model = Prophet( daily_seasonality=daily_seasonality, weekly_seasonality=weekly_seasonality, yearly_seasonality=yearly_seasonality, seasonality_mode=seasonality_mode, changepoint_prior_scale=changepoint_prior_scale, ) model.fit(df_prophet) future = model.make_future_dataframe(periods=periods, freq=freq) forecast = model.predict(future) return forecast, "" except Exception as e: return pd.DataFrame(), f"Forecast error: {e}" def prophet_wrapper(df_prophet, forecast_steps, freq, daily_seasonality, weekly_seasonality, yearly_seasonality, seasonality_mode, changepoint_prior_scale): if len(df_prophet) < 10: return pd.DataFrame(), "Not enough data for forecasting (need >=10 rows)." full_forecast, err = prophet_forecast( df_prophet, forecast_steps, freq, daily_seasonality, weekly_seasonality, yearly_seasonality, seasonality_mode, changepoint_prior_scale, ) if err: return pd.DataFrame(), err future_only = full_forecast.loc[len(df_prophet):, ["ds", "yhat", "yhat_lower", "yhat_upper"]] return future_only, "" def create_forecast_plot(forecast_df): if forecast_df.empty: return go.Figure() fig = go.Figure() fig.add_trace(go.Scatter( x=forecast_df["ds"], y=forecast_df["yhat"], mode="lines", name="Forecast", line=dict(color="blue", width=2) )) fig.add_trace(go.Scatter( x=forecast_df["ds"], y=forecast_df["yhat_lower"], fill=None, mode="lines", line=dict(width=0), showlegend=True, name="Lower Bound" )) fig.add_trace(go.Scatter( x=forecast_df["ds"], y=forecast_df["yhat_upper"], fill="tonexty", mode="lines", line=dict(width=0), name="Upper Bound" )) fig.update_layout( title="Price Forecast", xaxis_title="Time", yaxis_title="Price", hovermode="x unified", template="plotly_white", ) return fig # --- Model Training and Prediction --- model = RandomForestClassifier(**RANDOM_FOREST_PARAMS) def train_model(df): if df.empty: return df["target"] = (df["close"].pct_change() > 0.05).astype(int) features = df[["close", "volume"]].dropna() target = df["target"].dropna() if not features.empty and not target.empty: model.fit(features, target) else: print("Not enough data for model training.") def predict_growth(latest_data): if not hasattr(model, 'estimators_') or len(model.estimators_) == 0: return [0] try: prediction = model.predict(latest_data.reshape(1, -1)) return prediction except Exception as e: print(f"Prediction error: {e}") return [0] # --- Main Prediction and Display Function --- def analyze_market(market_type, symbol, interval, forecast_steps, daily_seasonality, weekly_seasonality, yearly_seasonality, seasonality_mode, changepoint_prior_scale, sentiment_keyword=""): df = pd.DataFrame() error_message = "" sentiment_score = 0 try: if market_type == "Crypto": df = fetch_crypto_data(symbol, interval=interval) elif market_type == "Stock": df = fetch_stock_data(symbol, interval=interval) else: error_message = "Invalid market type selected." return None, None, None, None, None, "", error_message, 0 if sentiment_keyword: sentiment_score = fetch_sentiment_data(sentiment_keyword) except Exception as e: error_message = f"Data Fetching Error: {e}" return None, None, None, None, None, "", error_message, 0 if df.empty: error_message = "No data fetched." return None, None, None, None, None, "", error_message, 0 df["timestamp"] = pd.to_datetime(df["timestamp"]) numeric_cols = ["open", "high", "low", "close", "volume"] df[numeric_cols] = df[numeric_cols].astype(float) df = calculate_technical_indicators(df) df_prophet = prepare_data_for_prophet(df) freq = "h" if interval == "1h" or interval == "60min" else "d" forecast_df, prophet_error = prophet_wrapper( df_prophet, forecast_steps, freq, daily_seasonality, weekly_seasonality, yearly_seasonality, seasonality_mode, changepoint_prior_scale, ) if prophet_error: error_message = f"Prophet Error: {prophet_error}" return None, None, None, None, None, "", error_message, sentiment_score forecast_plot = create_forecast_plot(forecast_df) tech_plot, rsi_plot, macd_plot = create_technical_charts(df) try: train_model(df.copy()) if not df.empty: latest_data = df[["close", "volume"]].iloc[-1].values growth_prediction = predict_growth(latest_data) growth_label = "Yes" if growth_prediction[0] == 1 else "No" else: growth_label = "N/A: Insufficient Data" except Exception as e: error_message = f"Model Error: {e}" growth_label = "N/A" forecast_df_display = forecast_df.loc[:, ["ds", "yhat", "yhat_lower", "yhat_upper"]].copy() forecast_df_display.rename(columns={"ds": "Date", "yhat": "Forecast", "yhat_lower": "Lower Bound", "yhat_upper": "Upper Bound"}, inplace=True) return forecast_plot, tech_plot, rsi_plot, macd_plot, forecast_df_display, growth_label, error_message, sentiment_score def chatbot_response(message, history): market_type = "Crypto" # Default market type symbol = "BTC-USD" # Default symbol interval = "1h" # Default interval forecast_steps = DEFAULT_FORECAST_STEPS daily_seasonality = DEFAULT_DAILY_SEASONALITY weekly_seasonality = DEFAULT_WEEKLY_SEASONALITY yearly_seasonality = DEFAULT_YEARLY_SEASONALITY seasonality_mode = DEFAULT_SEASONALITY_MODE changepoint_prior_scale = DEFAULT_CHANGEPOINT_PRIOR_SCALE sentiment_keyword = "" # Simple keyword parsing - improve this for more robust parsing message_lower = message.lower() if "stock" in message_lower: market_type = "Stock" symbol = "AAPL" # Default stock symbol elif "crypto" in message_lower: market_type = "Crypto" symbol = "BTC-USD" # Default crypto symbol for crypto_sym in CRYPTO_SYMBOLS: if crypto_sym.lower() in message_lower: symbol = crypto_sym market_type = "Crypto" break for stock_sym in STOCK_SYMBOLS: if stock_sym.lower() in message_lower: symbol = stock_sym market_type = "Stock" break for intv in INTERVAL_OPTIONS: if intv in message_lower: interval = intv break forecast_steps_match = re.search(r'forecast\s*(\d+)\s*steps', message_lower) if forecast_steps_match: forecast_steps = int(forecast_steps_match.group(1)) sentiment_match = re.search(r'sentiment\s*(.+)', message_lower) if sentiment_match: sentiment_keyword = sentiment_match.group(1).strip() plots, tech_plot, rsi_plot, macd_plot, forecast_df, growth_label, error_message, sentiment_score = analyze_market( market_type, symbol, interval, forecast_steps, daily_seasonality, weekly_seasonality, yearly_seasonality, seasonality_mode, changepoint_prior_scale, sentiment_keyword ) response = "" if error_message: response += f"Error: {error_message}\n\n" if plots and not error_message: response += "Here is the price forecast plot.\n\n" # In a real chatbot, you might provide a link or embed the plot if possible. else: response += "Could not generate forecast plot.\n\n" if tech_plot and rsi_plot and macd_plot and not error_message: response += "Technical analysis plots (Bollinger Bands, RSI, MACD) are generated.\n\n" # Again, link or embed plots in a real chatbot else: response += "Could not generate technical analysis plots.\n\n" if not error_message: response += f"Explosive Growth Prediction: {growth_label}\n" response += f"Sentiment Score (for keyword '{sentiment_keyword}'): {sentiment_score:.2f}\n" if not forecast_df.empty: # Summarize forecast data instead of displaying the full dataframe in text forecast_summary = forecast_df.tail().to_string() # Just showing last few rows as summary response += "\nForecast Data Summary (last few points):\n" + forecast_summary + "\n" else: response += "\nNo forecast data available.\n" return response with gr.ChatInterface( chatbot_response, title="Market Analysis Chatbot", description="Ask me about crypto or stock market analysis. For example, try: 'Analyze crypto BTC-USD 1d forecast 30 steps sentiment Bitcoin' or 'Stock AAPL 1h analysis'.", examples=[ "Analyze crypto ETH-USD 1h", "Stock MSFT 1d forecast 10 steps", "Crypto LTC-USD 1wk sentiment Litecoin", "Analyze stock GOOGL", "What about crypto XRP-USD?", ], theme=gr.themes.Base() ) as demo: demo.launch()