File size: 4,023 Bytes
760a820
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import gradio as gr
import pandas as pd
import requests
from prophet import Prophet
import plotly.graph_objs as go
import math
import numpy as np

# Constants for API endpoints
OKX_TICKERS_ENDPOINT = "https://www.okx.com/api/v5/market/tickers?instType=SPOT"
OKX_CANDLE_ENDPOINT = "https://www.okx.com/api/v5/market/candles"

TIMEFRAME_MAPPING = {
    "1m": "1m",
    "5m": "5m",
    "15m": "15m",
    "30m": "30m",
    "1h": "1H",
    "2h": "2H",
    "4h": "4H",
    "6h": "6H",
    "12h": "12H",
    "1d": "1D",
    "1w": "1W",
}

# Function to calculate technical indicators
def calculate_technical_indicators(df):
    # RSI Calculation
    delta = df['close'].diff()
    gain = (delta.where(delta > 0, 0)).rolling(window=14).mean()
    loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean()
    rs = gain / loss
    df['RSI'] = 100 - (100 / (1 + rs))
    
    # MACD Calculation
    exp1 = df['close'].ewm(span=12, adjust=False).mean()
    exp2 = df['close'].ewm(span=26, adjust=False).mean()
    df['MACD'] = exp1 - exp2
    df['Signal_Line'] = df['MACD'].ewm(span=9, adjust=False).mean()
    
    # Bollinger Bands Calculation
    df['MA20'] = df['close'].rolling(window=20).mean()
    df['BB_upper'] = df['MA20'] + 2 * df['close'].rolling(window=20).std()
    df['BB_lower'] = df['MA20'] - 2 * df['close'].rolling(window=20).std()
    
    return df

# Function to create technical analysis charts
def create_technical_charts(df):
    # Price and Bollinger Bands Chart
    fig1 = go.Figure()
    fig1.add_trace(go.Candlestick(
        x=df['timestamp'],
        open=df['open'],
        high=df['high'],
        low=df['low'],
        close=df['close'],
        name='Price'
    ))
    fig1.add_trace(go.Scatter(x=df['timestamp'], y=df['BB_upper'], name='Upper BB', line=dict(color='gray', dash='dash')))
    fig1.add_trace(go.Scatter(x=df['timestamp'], y=df['BB_lower'], name='Lower BB', line=dict(color='gray', dash='dash')))
    fig1.update_layout(title='Price and Bollinger Bands', xaxis_title='Date', yaxis_title='Price')

    # RSI Chart
    fig2 = go.Figure()
    fig2.add_trace(go.Scatter(x=df['timestamp'], y=df['RSI'], name='RSI'))
    fig2.add_hline(y=70, line_dash="dash", line_color="red")
    fig2.add_hline(y=30, line_dash="dash", line_color="green")
    fig2.update_layout(title='RSI Indicator', xaxis_title='Date', yaxis_title='RSI')

    # MACD Chart
    fig3 = go.Figure()
    fig3.add_trace(go.Scatter(x=df['timestamp'], y=df['MACD'], name='MACD'))
    fig3.add_trace(go.Scatter(x=df['timestamp'], y=df['Signal_Line'], name='Signal Line'))
    fig3.update_layout(title='MACD', xaxis_title='Date', yaxis_title='Value')

    return fig1, fig2, fig3

# Fetch available symbols from OKX API
def fetch_okx_symbols():
    try:
        resp = requests.get(OKX_TICKERS_ENDPOINT)
        data = resp.json().get("data", [])
        symbols = [item["instId"] for item in data if item.get("instType") == "SPOT"]
        return ["BTC-USDT"] + symbols if symbols else ["BTC-USDT"]
    except Exception as e:
        return ["BTC-USDT"]

# Fetch historical candle data from OKX API
def fetch_okx_candles(symbol, timeframe="1H", total=2000):
    calls_needed = math.ceil(total / 300)
    all_data = []
    
    for _ in range(calls_needed):
        params = {"instId": symbol, "bar": timeframe, "limit": 300}
        resp = requests.get(OKX_CANDLE_ENDPOINT, params=params)
        data = resp.json().get("data", [])
        
        if not data:
            break
        
        columns = ["ts", "o", "h", "l", "c"]
        df_chunk = pd.DataFrame(data, columns=columns)
        df_chunk.rename(columns={"ts": "timestamp", "o": "open", 
                                  "h": "high", "l": "low", 
                                  "c": "close"}, inplace=True)
        all_data.append(df_chunk)

        if len(data) < 300:
            break
    
    if not all_data:
        return pd.DataFrame()

    df_all = pd.concat(all_data)
    
   # Convert timestamps to datetime and calculate indicators
   ...