Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -5,50 +5,48 @@ from prophet import Prophet
|
|
5 |
import plotly.graph_objs as go
|
6 |
import math
|
7 |
import numpy as np
|
|
|
|
|
8 |
|
9 |
-
#
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
"1h": "1H",
|
19 |
-
"2h": "2H",
|
20 |
-
"4h": "4H",
|
21 |
-
"6h": "6H",
|
22 |
-
"12h": "12H",
|
23 |
-
"1d": "1D",
|
24 |
-
"1w": "1W",
|
25 |
-
}
|
26 |
-
|
27 |
-
# Function to calculate technical indicators
|
28 |
def calculate_technical_indicators(df):
|
|
|
|
|
|
|
|
|
29 |
# RSI Calculation
|
30 |
delta = df['close'].diff()
|
31 |
gain = (delta.where(delta > 0, 0)).rolling(window=14).mean()
|
32 |
loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean()
|
33 |
rs = gain / loss
|
34 |
df['RSI'] = 100 - (100 / (1 + rs))
|
35 |
-
|
36 |
# MACD Calculation
|
37 |
exp1 = df['close'].ewm(span=12, adjust=False).mean()
|
38 |
exp2 = df['close'].ewm(span=26, adjust=False).mean()
|
39 |
df['MACD'] = exp1 - exp2
|
40 |
df['Signal_Line'] = df['MACD'].ewm(span=9, adjust=False).mean()
|
41 |
-
|
42 |
# Bollinger Bands Calculation
|
43 |
df['MA20'] = df['close'].rolling(window=20).mean()
|
44 |
df['BB_upper'] = df['MA20'] + 2 * df['close'].rolling(window=20).std()
|
45 |
df['BB_lower'] = df['MA20'] - 2 * df['close'].rolling(window=20).std()
|
46 |
-
|
47 |
return df
|
48 |
|
49 |
-
# Function to create technical analysis charts
|
50 |
def create_technical_charts(df):
|
51 |
-
|
|
|
|
|
|
|
52 |
fig1 = go.Figure()
|
53 |
fig1.add_trace(go.Candlestick(
|
54 |
x=df['timestamp'],
|
@@ -62,14 +60,12 @@ def create_technical_charts(df):
|
|
62 |
fig1.add_trace(go.Scatter(x=df['timestamp'], y=df['BB_lower'], name='Lower BB', line=dict(color='gray', dash='dash')))
|
63 |
fig1.update_layout(title='Price and Bollinger Bands', xaxis_title='Date', yaxis_title='Price')
|
64 |
|
65 |
-
# RSI Chart
|
66 |
fig2 = go.Figure()
|
67 |
fig2.add_trace(go.Scatter(x=df['timestamp'], y=df['RSI'], name='RSI'))
|
68 |
fig2.add_hline(y=70, line_dash="dash", line_color="red")
|
69 |
fig2.add_hline(y=30, line_dash="dash", line_color="green")
|
70 |
fig2.update_layout(title='RSI Indicator', xaxis_title='Date', yaxis_title='RSI')
|
71 |
|
72 |
-
# MACD Chart
|
73 |
fig3 = go.Figure()
|
74 |
fig3.add_trace(go.Scatter(x=df['timestamp'], y=df['MACD'], name='MACD'))
|
75 |
fig3.add_trace(go.Scatter(x=df['timestamp'], y=df['Signal_Line'], name='Signal Line'))
|
@@ -77,73 +73,19 @@ def create_technical_charts(df):
|
|
77 |
|
78 |
return fig1, fig2, fig3
|
79 |
|
80 |
-
#
|
81 |
-
def fetch_okx_symbols():
|
82 |
-
try:
|
83 |
-
resp = requests.get(OKX_TICKERS_ENDPOINT)
|
84 |
-
data = resp.json().get("data", [])
|
85 |
-
symbols = [item["instId"] for item in data if item.get("instType") == "SPOT"]
|
86 |
-
return ["BTC-USDT"] + symbols if symbols else ["BTC-USDT"]
|
87 |
-
except Exception as e:
|
88 |
-
print(f"Error fetching symbols: {e}")
|
89 |
-
return ["BTC-USDT"]
|
90 |
-
|
91 |
-
# Fetch historical candle data from OKX API
|
92 |
-
def fetch_okx_candles(symbol, timeframe="1H", total=2000):
|
93 |
-
calls_needed = math.ceil(total / 300)
|
94 |
-
all_data = []
|
95 |
-
|
96 |
-
for _ in range(calls_needed):
|
97 |
-
params = {"instId": symbol, "bar": timeframe, "limit": 300}
|
98 |
-
try:
|
99 |
-
resp = requests.get(OKX_CANDLE_ENDPOINT, params=params)
|
100 |
-
resp.raise_for_status() # Raise HTTPError for bad responses (4xx or 5xx)
|
101 |
-
data = resp.json().get("data", [])
|
102 |
-
except requests.exceptions.RequestException as e:
|
103 |
-
print(f"Error fetching candles: {e}")
|
104 |
-
return pd.DataFrame()
|
105 |
-
except (ValueError, KeyError) as e:
|
106 |
-
print(f"Error parsing candle data: {e}")
|
107 |
-
return pd.DataFrame()
|
108 |
-
|
109 |
-
if not data:
|
110 |
-
break
|
111 |
-
|
112 |
-
columns = ["ts", "o", "h", "l", "c"]
|
113 |
-
df_chunk = pd.DataFrame(data, columns=columns)
|
114 |
-
df_chunk.rename(columns={"ts": "timestamp", "o": "open",
|
115 |
-
"h": "high", "l": "low",
|
116 |
-
"c": "close"}, inplace=True)
|
117 |
-
all_data.append(df_chunk)
|
118 |
-
|
119 |
-
if len(data) < 300:
|
120 |
-
break
|
121 |
-
|
122 |
-
if not all_data:
|
123 |
-
return pd.DataFrame()
|
124 |
-
|
125 |
-
df_all = pd.concat(all_data)
|
126 |
-
|
127 |
-
# Convert timestamps to datetime and calculate indicators
|
128 |
-
df_all["timestamp"] = pd.to_datetime(df_all["timestamp"], unit="ms")
|
129 |
-
numeric_cols = ["open", "high", "low", "close"]
|
130 |
-
df_all[numeric_cols] = df_all[numeric_cols].astype(float)
|
131 |
-
df_all = calculate_technical_indicators(df_all)
|
132 |
-
|
133 |
-
return df_all
|
134 |
-
|
135 |
-
# Prepare data for Prophet forecasting
|
136 |
def prepare_data_for_prophet(df):
|
|
|
137 |
if df.empty:
|
138 |
return pd.DataFrame(columns=["ds", "y"])
|
139 |
df_prophet = df.rename(columns={"timestamp": "ds", "close": "y"})
|
140 |
return df_prophet[["ds", "y"]]
|
141 |
|
142 |
-
# Perform forecasting using Prophet
|
143 |
def prophet_forecast(df_prophet, periods=10, freq="h", daily_seasonality=False, weekly_seasonality=False, yearly_seasonality=False, seasonality_mode="additive", changepoint_prior_scale=0.05):
|
|
|
144 |
if df_prophet.empty:
|
145 |
return pd.DataFrame(), "No data for Prophet."
|
146 |
-
|
147 |
try:
|
148 |
model = Prophet(
|
149 |
daily_seasonality=daily_seasonality,
|
@@ -159,8 +101,8 @@ def prophet_forecast(df_prophet, periods=10, freq="h", daily_seasonality=False,
|
|
159 |
except Exception as e:
|
160 |
return pd.DataFrame(), f"Forecast error: {e}"
|
161 |
|
162 |
-
# Wrapper function for forecasting
|
163 |
def prophet_wrapper(df_prophet, forecast_steps, freq, daily_seasonality, weekly_seasonality, yearly_seasonality, seasonality_mode, changepoint_prior_scale):
|
|
|
164 |
if len(df_prophet) < 10:
|
165 |
return pd.DataFrame(), "Not enough data for forecasting (need >=10 rows)."
|
166 |
|
@@ -180,8 +122,8 @@ def prophet_wrapper(df_prophet, forecast_steps, freq, daily_seasonality, weekly_
|
|
180 |
future_only = full_forecast.loc[len(df_prophet):, ["ds", "yhat", "yhat_lower", "yhat_upper"]]
|
181 |
return future_only, ""
|
182 |
|
183 |
-
# Create forecast plot
|
184 |
def create_forecast_plot(forecast_df):
|
|
|
185 |
if forecast_df.empty:
|
186 |
return go.Figure()
|
187 |
|
@@ -222,44 +164,39 @@ def create_forecast_plot(forecast_df):
|
|
222 |
)
|
223 |
return fig
|
224 |
|
225 |
-
#
|
226 |
-
def
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
forecast_steps=forecast_steps,
|
231 |
-
total_candles=total_candles,
|
232 |
-
daily_seasonality=daily_seasonality,
|
233 |
-
weekly_seasonality=weekly_seasonality,
|
234 |
-
yearly_seasonality=yearly_seasonality,
|
235 |
-
seasonality_mode=seasonality_mode,
|
236 |
-
changepoint_prior_scale=changepoint_prior_scale
|
237 |
-
)
|
238 |
-
|
239 |
-
if error:
|
240 |
-
return None, None, None, None, pd.DataFrame() # Return empty dataframe for forecast_df
|
241 |
-
|
242 |
-
forecast_plot = create_forecast_plot(forecast_df)
|
243 |
-
tech_plot, rsi_plot, macd_plot = create_technical_charts(df_raw)
|
244 |
-
|
245 |
-
# Prepare forecast data for the Dataframe output
|
246 |
-
forecast_df_display = forecast_df.loc[:, ["ds", "yhat", "yhat_lower", "yhat_upper"]].copy()
|
247 |
-
forecast_df_display.rename(columns={"ds": "Date", "yhat": "Forecast", "yhat_lower": "Lower Bound", "yhat_upper": "Upper Bound"}, inplace=True)
|
248 |
-
|
249 |
-
return forecast_plot, tech_plot, rsi_plot, macd_plot, forecast_df_display
|
250 |
-
|
251 |
-
# Main prediction function
|
252 |
-
def predict(symbol, timeframe, forecast_steps, total_candles, daily_seasonality, weekly_seasonality, yearly_seasonality, seasonality_mode, changepoint_prior_scale):
|
253 |
-
okx_bar = TIMEFRAME_MAPPING.get(timeframe, "1H")
|
254 |
-
df_raw = fetch_okx_candles(symbol=symbol, timeframe=okx_bar, total=total_candles)
|
255 |
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
|
262 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
263 |
df_prophet,
|
264 |
forecast_steps,
|
265 |
freq,
|
@@ -269,112 +206,86 @@ def predict(symbol, timeframe, forecast_steps, total_candles, daily_seasonality,
|
|
269 |
seasonality_mode,
|
270 |
changepoint_prior_scale,
|
271 |
)
|
272 |
-
|
273 |
-
if err2:
|
274 |
-
return pd.DataFrame(), pd.DataFrame(), err2
|
275 |
-
|
276 |
-
return df_raw, future_df, ""
|
277 |
-
|
278 |
-
|
279 |
-
# Main Gradio app setup
|
280 |
-
def main():
|
281 |
-
symbols = fetch_okx_symbols()
|
282 |
-
|
283 |
-
with gr.Blocks(theme=gr.themes.Base()) as demo:
|
284 |
-
# Header
|
285 |
-
with gr.Row():
|
286 |
-
gr.Markdown("# CryptoVision")
|
287 |
-
|
288 |
-
# Market Selection and Forecast Parameters
|
289 |
-
with gr.Row():
|
290 |
-
with gr.Column(scale=1):
|
291 |
-
gr.Markdown("### Market Selection")
|
292 |
-
symbol_dd = gr.Dropdown(
|
293 |
-
label="Trading Pair",
|
294 |
-
choices=symbols,
|
295 |
-
value="BTC-USDT"
|
296 |
-
)
|
297 |
-
timeframe_dd = gr.Dropdown(
|
298 |
-
label="Timeframe",
|
299 |
-
choices=list(TIMEFRAME_MAPPING.keys()),
|
300 |
-
value="1h"
|
301 |
-
)
|
302 |
-
with gr.Column(scale=1):
|
303 |
-
gr.Markdown("### Forecast Parameters")
|
304 |
-
forecast_steps_slider = gr.Slider(
|
305 |
-
label="Forecast Steps",
|
306 |
-
minimum=1,
|
307 |
-
maximum=100,
|
308 |
-
value=24,
|
309 |
-
step=1
|
310 |
-
)
|
311 |
-
total_candles_slider = gr.Slider(
|
312 |
-
label="Historical Candles",
|
313 |
-
minimum=300,
|
314 |
-
maximum=3000,
|
315 |
-
value=2000,
|
316 |
-
step=100
|
317 |
-
)
|
318 |
-
|
319 |
-
# Advanced Settings
|
320 |
-
with gr.Row():
|
321 |
-
with gr.Column():
|
322 |
-
gr.Markdown("### Advanced Settings")
|
323 |
-
daily_box = gr.Checkbox(label="Daily Seasonality", value=True)
|
324 |
-
weekly_box = gr.Checkbox(label="Weekly Seasonality", value=True)
|
325 |
-
yearly_box = gr.Checkbox(label="Yearly Seasonality", value=False)
|
326 |
-
seasonality_mode_dd = gr.Dropdown(
|
327 |
-
label="Seasonality Mode",
|
328 |
-
choices=["additive", "multiplicative"],
|
329 |
-
value="additive"
|
330 |
-
)
|
331 |
-
changepoint_scale_slider = gr.Slider(
|
332 |
-
label="Changepoint Prior Scale",
|
333 |
-
minimum=0.01,
|
334 |
-
maximum=1.0,
|
335 |
-
step=0.01,
|
336 |
-
value=0.05
|
337 |
-
)
|
338 |
-
|
339 |
-
# Generate Forecast Button
|
340 |
-
forecast_btn = gr.Button("Generate Forecast", variant="primary", size="lg")
|
341 |
-
|
342 |
-
# Output Plots
|
343 |
-
with gr.Row():
|
344 |
-
forecast_plot = gr.Plot(label="Price Forecast")
|
345 |
-
|
346 |
-
with gr.Row():
|
347 |
-
tech_plot = gr.Plot(label="Technical Analysis")
|
348 |
-
rsi_plot = gr.Plot(label="RSI Indicator")
|
349 |
-
|
350 |
-
with gr.Row():
|
351 |
-
macd_plot = gr.Plot(label="MACD")
|
352 |
-
|
353 |
-
# Output Data Table
|
354 |
-
forecast_df = gr.Dataframe(
|
355 |
-
label="Forecast Data",
|
356 |
-
headers=["Date", "Forecast", "Lower Bound", "Upper Bound"]
|
357 |
-
)
|
358 |
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
timeframe_dd,
|
365 |
-
forecast_steps_slider,
|
366 |
-
total_candles_slider,
|
367 |
-
daily_box,
|
368 |
-
weekly_box,
|
369 |
-
yearly_box,
|
370 |
-
seasonality_mode_dd,
|
371 |
-
changepoint_scale_slider,
|
372 |
-
],
|
373 |
-
outputs=[forecast_plot, tech_plot, rsi_plot, macd_plot, forecast_df]
|
374 |
-
)
|
375 |
|
376 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
377 |
|
378 |
if __name__ == "__main__":
|
379 |
-
|
380 |
-
app.launch()
|
|
|
5 |
import plotly.graph_objs as go
|
6 |
import math
|
7 |
import numpy as np
|
8 |
+
from data_fetcher import fetch_crypto_data, fetch_stock_data, fetch_sentiment_data # Import the data fetcher module
|
9 |
+
from src.model import train_model, predict_growth # Import your model functions
|
10 |
|
11 |
+
# --- Replace with your Alpha Vantage API key ---
|
12 |
+
ALPHA_VANTAGE_API_KEY = "YOUR_ALPHA_VANTAGE_API_KEY" # <--- Replace with your key
|
13 |
+
|
14 |
+
# --- Constants ---
|
15 |
+
CRYPTO_SYMBOLS = ["BTCUSDT", "ETHUSDT"]
|
16 |
+
STOCK_SYMBOLS = ["AAPL", "MSFT"]
|
17 |
+
INTERVAL_OPTIONS = ["1h", "60min"] # Consistent naming
|
18 |
+
|
19 |
+
# --- Technical Analysis Functions ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
def calculate_technical_indicators(df):
|
21 |
+
"""Calculates RSI, MACD, and Bollinger Bands."""
|
22 |
+
if df.empty:
|
23 |
+
return df
|
24 |
+
|
25 |
# RSI Calculation
|
26 |
delta = df['close'].diff()
|
27 |
gain = (delta.where(delta > 0, 0)).rolling(window=14).mean()
|
28 |
loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean()
|
29 |
rs = gain / loss
|
30 |
df['RSI'] = 100 - (100 / (1 + rs))
|
31 |
+
|
32 |
# MACD Calculation
|
33 |
exp1 = df['close'].ewm(span=12, adjust=False).mean()
|
34 |
exp2 = df['close'].ewm(span=26, adjust=False).mean()
|
35 |
df['MACD'] = exp1 - exp2
|
36 |
df['Signal_Line'] = df['MACD'].ewm(span=9, adjust=False).mean()
|
37 |
+
|
38 |
# Bollinger Bands Calculation
|
39 |
df['MA20'] = df['close'].rolling(window=20).mean()
|
40 |
df['BB_upper'] = df['MA20'] + 2 * df['close'].rolling(window=20).std()
|
41 |
df['BB_lower'] = df['MA20'] - 2 * df['close'].rolling(window=20).std()
|
42 |
+
|
43 |
return df
|
44 |
|
|
|
45 |
def create_technical_charts(df):
|
46 |
+
"""Creates technical analysis charts (Price, RSI, MACD)."""
|
47 |
+
if df.empty:
|
48 |
+
return None, None, None
|
49 |
+
|
50 |
fig1 = go.Figure()
|
51 |
fig1.add_trace(go.Candlestick(
|
52 |
x=df['timestamp'],
|
|
|
60 |
fig1.add_trace(go.Scatter(x=df['timestamp'], y=df['BB_lower'], name='Lower BB', line=dict(color='gray', dash='dash')))
|
61 |
fig1.update_layout(title='Price and Bollinger Bands', xaxis_title='Date', yaxis_title='Price')
|
62 |
|
|
|
63 |
fig2 = go.Figure()
|
64 |
fig2.add_trace(go.Scatter(x=df['timestamp'], y=df['RSI'], name='RSI'))
|
65 |
fig2.add_hline(y=70, line_dash="dash", line_color="red")
|
66 |
fig2.add_hline(y=30, line_dash="dash", line_color="green")
|
67 |
fig2.update_layout(title='RSI Indicator', xaxis_title='Date', yaxis_title='RSI')
|
68 |
|
|
|
69 |
fig3 = go.Figure()
|
70 |
fig3.add_trace(go.Scatter(x=df['timestamp'], y=df['MACD'], name='MACD'))
|
71 |
fig3.add_trace(go.Scatter(x=df['timestamp'], y=df['Signal_Line'], name='Signal Line'))
|
|
|
73 |
|
74 |
return fig1, fig2, fig3
|
75 |
|
76 |
+
# --- Prophet Forecasting Functions ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
def prepare_data_for_prophet(df):
|
78 |
+
"""Prepares data for Prophet."""
|
79 |
if df.empty:
|
80 |
return pd.DataFrame(columns=["ds", "y"])
|
81 |
df_prophet = df.rename(columns={"timestamp": "ds", "close": "y"})
|
82 |
return df_prophet[["ds", "y"]]
|
83 |
|
|
|
84 |
def prophet_forecast(df_prophet, periods=10, freq="h", daily_seasonality=False, weekly_seasonality=False, yearly_seasonality=False, seasonality_mode="additive", changepoint_prior_scale=0.05):
|
85 |
+
"""Performs Prophet forecasting."""
|
86 |
if df_prophet.empty:
|
87 |
return pd.DataFrame(), "No data for Prophet."
|
88 |
+
|
89 |
try:
|
90 |
model = Prophet(
|
91 |
daily_seasonality=daily_seasonality,
|
|
|
101 |
except Exception as e:
|
102 |
return pd.DataFrame(), f"Forecast error: {e}"
|
103 |
|
|
|
104 |
def prophet_wrapper(df_prophet, forecast_steps, freq, daily_seasonality, weekly_seasonality, yearly_seasonality, seasonality_mode, changepoint_prior_scale):
|
105 |
+
"""Wrapper for Prophet forecasting."""
|
106 |
if len(df_prophet) < 10:
|
107 |
return pd.DataFrame(), "Not enough data for forecasting (need >=10 rows)."
|
108 |
|
|
|
122 |
future_only = full_forecast.loc[len(df_prophet):, ["ds", "yhat", "yhat_lower", "yhat_upper"]]
|
123 |
return future_only, ""
|
124 |
|
|
|
125 |
def create_forecast_plot(forecast_df):
|
126 |
+
"""Creates the forecast plot."""
|
127 |
if forecast_df.empty:
|
128 |
return go.Figure()
|
129 |
|
|
|
164 |
)
|
165 |
return fig
|
166 |
|
167 |
+
# --- Main Prediction and Display Function ---
|
168 |
+
def analyze_market(market_type, symbol, interval, forecast_steps, daily_seasonality, weekly_seasonality, yearly_seasonality, seasonality_mode, changepoint_prior_scale):
|
169 |
+
"""Main function to orchestrate data fetching, analysis, and prediction."""
|
170 |
+
df = pd.DataFrame()
|
171 |
+
error_message = ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
|
173 |
+
# 1. Data Fetching
|
174 |
+
if market_type == "Crypto":
|
175 |
+
try:
|
176 |
+
df = fetch_crypto_data(symbol)
|
177 |
+
except Exception as e:
|
178 |
+
error_message = f"Error fetching crypto data: {e}"
|
179 |
+
elif market_type == "Stock":
|
180 |
+
try:
|
181 |
+
df = fetch_stock_data(symbol)
|
182 |
+
except Exception as e:
|
183 |
+
error_message = f"Error fetching stock data: {e}"
|
184 |
+
else:
|
185 |
+
error_message = "Invalid market type selected."
|
186 |
|
187 |
+
if df.empty:
|
188 |
+
return None, None, None, None, None, "", error_message # Correctly pass the error message
|
189 |
+
|
190 |
+
# 2. Preprocessing & Technical Analysis
|
191 |
+
df["timestamp"] = pd.to_datetime(df["timestamp"]) # No unit arg as it's handled in fetcher
|
192 |
+
numeric_cols = ["open", "high", "low", "close", "volume"]
|
193 |
+
df[numeric_cols] = df[numeric_cols].astype(float)
|
194 |
+
df = calculate_technical_indicators(df)
|
195 |
+
|
196 |
+
# 3. Prophet Forecasting
|
197 |
+
df_prophet = prepare_data_for_prophet(df)
|
198 |
+
freq = "h" if interval == "1h" or interval == "60min" else "d" #dynamic freq
|
199 |
+
forecast_df, prophet_error = prophet_wrapper(
|
200 |
df_prophet,
|
201 |
forecast_steps,
|
202 |
freq,
|
|
|
206 |
seasonality_mode,
|
207 |
changepoint_prior_scale,
|
208 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
|
210 |
+
if prophet_error:
|
211 |
+
error_message = f"Prophet Error: {prophet_error}"
|
212 |
+
return None, None, None, None, None, "", error_message #Return error
|
213 |
+
|
214 |
+
forecast_plot = create_forecast_plot(forecast_df)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
|
216 |
+
# 4. Create the Charts
|
217 |
+
tech_plot, rsi_plot, macd_plot = create_technical_charts(df)
|
218 |
+
|
219 |
+
# 5. Model Training and Prediction (simplified)
|
220 |
+
try:
|
221 |
+
train_model(df.copy()) # Train on a copy to avoid modifying original df.
|
222 |
+
if not df.empty: #Check if dataframe is empty or not.
|
223 |
+
latest_data = df[["close", "volume"]].iloc[-1].values # Get the last row for prediction.
|
224 |
+
growth_prediction = predict_growth(latest_data)
|
225 |
+
growth_label = "Yes" if growth_prediction[0] == 1 else "No"
|
226 |
+
else:
|
227 |
+
growth_label = "N/A: Insufficient Data" # If there is no data to predict the growth.
|
228 |
+
|
229 |
+
except Exception as e:
|
230 |
+
error_message = f"Model Error: {e}"
|
231 |
+
growth_label = "N/A"
|
232 |
+
|
233 |
+
# Prepare forecast data for the Dataframe output
|
234 |
+
forecast_df_display = forecast_df.loc[:, ["ds", "yhat", "yhat_lower", "yhat_upper"]].copy()
|
235 |
+
forecast_df_display.rename(columns={"ds": "Date", "yhat": "Forecast", "yhat_lower": "Lower Bound", "yhat_upper": "Upper Bound"}, inplace=True)
|
236 |
+
|
237 |
+
return forecast_plot, tech_plot, rsi_plot, macd_plot, forecast_df_display, growth_label, error_message #Return error
|
238 |
+
# --- Gradio Interface ---
|
239 |
+
with gr.Blocks(theme=gr.themes.Base()) as demo:
|
240 |
+
gr.Markdown("# Market Analysis and Prediction")
|
241 |
+
|
242 |
+
with gr.Row():
|
243 |
+
with gr.Column():
|
244 |
+
market_type_dd = gr.Radio(label="Market Type", choices=["Crypto", "Stock"], value="Crypto")
|
245 |
+
symbol_dd = gr.Dropdown(label="Symbol", choices=CRYPTO_SYMBOLS, value="BTCUSDT") # Start with Crypto
|
246 |
+
interval_dd = gr.Dropdown(label="Interval", choices=INTERVAL_OPTIONS, value="1h")
|
247 |
+
forecast_steps_slider = gr.Slider(label="Forecast Steps", minimum=1, maximum=100, value=24, step=1)
|
248 |
+
daily_box = gr.Checkbox(label="Daily Seasonality", value=True)
|
249 |
+
weekly_box = gr.Checkbox(label="Weekly Seasonality", value=True)
|
250 |
+
yearly_box = gr.Checkbox(label="Yearly Seasonality", value=False)
|
251 |
+
seasonality_mode_dd = gr.Dropdown(label="Seasonality Mode", choices=["additive", "multiplicative"], value="additive")
|
252 |
+
changepoint_scale_slider = gr.Slider(label="Changepoint Prior Scale", minimum=0.01, maximum=1.0, step=0.01, value=0.05)
|
253 |
+
|
254 |
+
with gr.Column():
|
255 |
+
forecast_plot = gr.Plot(label="Price Forecast")
|
256 |
+
with gr.Row():
|
257 |
+
tech_plot = gr.Plot(label="Technical Analysis")
|
258 |
+
rsi_plot = gr.Plot(label="RSI Indicator")
|
259 |
+
with gr.Row():
|
260 |
+
macd_plot = gr.Plot(label="MACD")
|
261 |
+
forecast_df = gr.Dataframe(label="Forecast Data", headers=["Date", "Forecast", "Lower Bound", "Upper Bound"])
|
262 |
+
growth_label_output = gr.Label(label="Explosive Growth Prediction") # Added for prediction.
|
263 |
+
|
264 |
+
# Event Listener to update symbol dropdown based on market type
|
265 |
+
def update_symbol_choices(market_type):
|
266 |
+
if market_type == "Crypto":
|
267 |
+
return gr.Dropdown(choices=CRYPTO_SYMBOLS, value="BTCUSDT")
|
268 |
+
elif market_type == "Stock":
|
269 |
+
return gr.Dropdown(choices=STOCK_SYMBOLS, value="AAPL") # Default to AAPL for stock
|
270 |
+
return gr.Dropdown(choices=[], value=None) # Shouldn't happen, but safety check
|
271 |
+
market_type_dd.change(fn=update_symbol_choices, inputs=[market_type_dd], outputs=[symbol_dd])
|
272 |
+
|
273 |
+
analyze_button = gr.Button("Analyze Market", variant="primary")
|
274 |
+
analyze_button.click(
|
275 |
+
fn=analyze_market,
|
276 |
+
inputs=[
|
277 |
+
market_type_dd,
|
278 |
+
symbol_dd,
|
279 |
+
interval_dd,
|
280 |
+
forecast_steps_slider,
|
281 |
+
daily_box,
|
282 |
+
weekly_box,
|
283 |
+
yearly_box,
|
284 |
+
seasonality_mode_dd,
|
285 |
+
changepoint_scale_slider,
|
286 |
+
],
|
287 |
+
outputs=[forecast_plot, tech_plot, rsi_plot, macd_plot, forecast_df, growth_label_output]
|
288 |
+
)
|
289 |
|
290 |
if __name__ == "__main__":
|
291 |
+
demo.launch()
|
|