Spaces:
Runtime error
Runtime error
Create App.py
Browse files
App.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
from sklearn.ensemble import RandomForestClassifier
|
5 |
+
from textblob import TextBlob
|
6 |
+
import tweepy
|
7 |
+
import time
|
8 |
+
|
9 |
+
class ExplosiveGrowthBot:
|
10 |
+
def __init__(self):
|
11 |
+
self.api_key = "YOUR_BINANCE_API_KEY"
|
12 |
+
self.base_url = "https://api.binance.com"
|
13 |
+
self.model = RandomForestClassifier()
|
14 |
+
self.data = pd.DataFrame()
|
15 |
+
self.twitter_api = self.setup_twitter_api()
|
16 |
+
|
17 |
+
def setup_twitter_api(self):
|
18 |
+
"""Set up Twitter API for sentiment analysis."""
|
19 |
+
consumer_key = "YOUR_TWITTER_CONSUMER_KEY"
|
20 |
+
consumer_secret = "YOUR_TWITTER_CONSUMER_SECRET"
|
21 |
+
access_token = "YOUR_TWITTER_ACCESS_TOKEN"
|
22 |
+
access_token_secret = "YOUR_TWITTER_ACCESS_SECRET"
|
23 |
+
|
24 |
+
auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
|
25 |
+
auth.set_access_token(access_token, access_token_secret)
|
26 |
+
return tweepy.API(auth)
|
27 |
+
|
28 |
+
def fetch_market_data(self, symbol="BTCUSDT", interval="1h", limit=100):
|
29 |
+
"""Fetch historical market data from Binance."""
|
30 |
+
url = f"{self.base_url}/api/v3/klines"
|
31 |
+
params = {"symbol": symbol, "interval": interval, "limit": limit}
|
32 |
+
response = requests.get(url, params=params)
|
33 |
+
if response.status_code == 200:
|
34 |
+
data = response.json()
|
35 |
+
df = pd.DataFrame(data, columns=["timestamp", "open", "high", "low", "close", "volume", "_", "_", "_", "_", "_"])
|
36 |
+
df["close"] = df["close"].astype(float)
|
37 |
+
df["volume"] = df["volume"].astype(float)
|
38 |
+
return df
|
39 |
+
else:
|
40 |
+
print("Error fetching market data:", response.text)
|
41 |
+
return None
|
42 |
+
|
43 |
+
def analyze_sentiment(self, keyword):
|
44 |
+
"""Analyze sentiment from Twitter."""
|
45 |
+
tweets = self.twitter_api.search_tweets(q=keyword, count=100, lang="en")
|
46 |
+
sentiments = []
|
47 |
+
for tweet in tweets:
|
48 |
+
analysis = TextBlob(tweet.text)
|
49 |
+
sentiments.append(analysis.sentiment.polarity)
|
50 |
+
return np.mean(sentiments)
|
51 |
+
|
52 |
+
def train_model(self, df):
|
53 |
+
"""Train the AI model to predict explosive growth."""
|
54 |
+
df["target"] = (df["close"].pct_change() > 0.05).astype(int) # Label: 1 if price increased by >5%
|
55 |
+
features = df[["close", "volume"]].dropna()
|
56 |
+
target = df["target"].dropna()
|
57 |
+
self.model.fit(features[:-1], target)
|
58 |
+
|
59 |
+
def predict_growth(self, latest_data):
|
60 |
+
"""Predict whether the asset will experience explosive growth."""
|
61 |
+
prediction = self.model.predict([latest_data])
|
62 |
+
return prediction[0]
|
63 |
+
|
64 |
+
def execute_trade(self, symbol, action):
|
65 |
+
"""Simulate trade execution."""
|
66 |
+
print(f"Executing {action} trade for {symbol}...")
|
67 |
+
|
68 |
+
def run(self):
|
69 |
+
"""Main loop for the bot."""
|
70 |
+
symbols_to_watch = ["BTCUSDT", "ETHUSDT", "DOGEUSDT"]
|
71 |
+
|
72 |
+
while True:
|
73 |
+
for symbol in symbols_to_watch:
|
74 |
+
# Fetch market data
|
75 |
+
df = self.fetch_market_data(symbol=symbol)
|
76 |
+
if df is not None:
|
77 |
+
# Analyze sentiment
|
78 |
+
sentiment_score = self.analyze_sentiment(symbol.replace("USDT", ""))
|
79 |
+
print(f"Sentiment score for {symbol}: {sentiment_score}")
|
80 |
+
|
81 |
+
# Train model and make predictions
|
82 |
+
self.train_model(df)
|
83 |
+
latest_data = df.iloc[-1][["close", "volume"]].values
|
84 |
+
prediction = self.predict_growth(latest_data)
|
85 |
+
|
86 |
+
# Decision-making based on prediction and sentiment
|
87 |
+
if prediction == 1 and sentiment_score > 0.5: # Strong buy signal
|
88 |
+
self.execute_trade(symbol, "BUY")
|
89 |
+
elif prediction == 0 and sentiment_score < -0.5: # Strong sell signal
|
90 |
+
self.execute_trade(symbol, "SELL")
|
91 |
+
|
92 |
+
time.sleep(300) # Wait 5 minutes before checking again
|
93 |
+
|
94 |
+
if __name__ == "__main__":
|
95 |
+
bot = ExplosiveGrowthBot()
|
96 |
+
bot.run()
|
97 |
+
|