MacDash commited on
Commit
bb8fd69
·
verified ·
1 Parent(s): 93d36d4

Create App.py

Browse files
Files changed (1) hide show
  1. App.py +97 -0
App.py ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import requests
2
+ import pandas as pd
3
+ import numpy as np
4
+ from sklearn.ensemble import RandomForestClassifier
5
+ from textblob import TextBlob
6
+ import tweepy
7
+ import time
8
+
9
+ class ExplosiveGrowthBot:
10
+ def __init__(self):
11
+ self.api_key = "YOUR_BINANCE_API_KEY"
12
+ self.base_url = "https://api.binance.com"
13
+ self.model = RandomForestClassifier()
14
+ self.data = pd.DataFrame()
15
+ self.twitter_api = self.setup_twitter_api()
16
+
17
+ def setup_twitter_api(self):
18
+ """Set up Twitter API for sentiment analysis."""
19
+ consumer_key = "YOUR_TWITTER_CONSUMER_KEY"
20
+ consumer_secret = "YOUR_TWITTER_CONSUMER_SECRET"
21
+ access_token = "YOUR_TWITTER_ACCESS_TOKEN"
22
+ access_token_secret = "YOUR_TWITTER_ACCESS_SECRET"
23
+
24
+ auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
25
+ auth.set_access_token(access_token, access_token_secret)
26
+ return tweepy.API(auth)
27
+
28
+ def fetch_market_data(self, symbol="BTCUSDT", interval="1h", limit=100):
29
+ """Fetch historical market data from Binance."""
30
+ url = f"{self.base_url}/api/v3/klines"
31
+ params = {"symbol": symbol, "interval": interval, "limit": limit}
32
+ response = requests.get(url, params=params)
33
+ if response.status_code == 200:
34
+ data = response.json()
35
+ df = pd.DataFrame(data, columns=["timestamp", "open", "high", "low", "close", "volume", "_", "_", "_", "_", "_"])
36
+ df["close"] = df["close"].astype(float)
37
+ df["volume"] = df["volume"].astype(float)
38
+ return df
39
+ else:
40
+ print("Error fetching market data:", response.text)
41
+ return None
42
+
43
+ def analyze_sentiment(self, keyword):
44
+ """Analyze sentiment from Twitter."""
45
+ tweets = self.twitter_api.search_tweets(q=keyword, count=100, lang="en")
46
+ sentiments = []
47
+ for tweet in tweets:
48
+ analysis = TextBlob(tweet.text)
49
+ sentiments.append(analysis.sentiment.polarity)
50
+ return np.mean(sentiments)
51
+
52
+ def train_model(self, df):
53
+ """Train the AI model to predict explosive growth."""
54
+ df["target"] = (df["close"].pct_change() > 0.05).astype(int) # Label: 1 if price increased by >5%
55
+ features = df[["close", "volume"]].dropna()
56
+ target = df["target"].dropna()
57
+ self.model.fit(features[:-1], target)
58
+
59
+ def predict_growth(self, latest_data):
60
+ """Predict whether the asset will experience explosive growth."""
61
+ prediction = self.model.predict([latest_data])
62
+ return prediction[0]
63
+
64
+ def execute_trade(self, symbol, action):
65
+ """Simulate trade execution."""
66
+ print(f"Executing {action} trade for {symbol}...")
67
+
68
+ def run(self):
69
+ """Main loop for the bot."""
70
+ symbols_to_watch = ["BTCUSDT", "ETHUSDT", "DOGEUSDT"]
71
+
72
+ while True:
73
+ for symbol in symbols_to_watch:
74
+ # Fetch market data
75
+ df = self.fetch_market_data(symbol=symbol)
76
+ if df is not None:
77
+ # Analyze sentiment
78
+ sentiment_score = self.analyze_sentiment(symbol.replace("USDT", ""))
79
+ print(f"Sentiment score for {symbol}: {sentiment_score}")
80
+
81
+ # Train model and make predictions
82
+ self.train_model(df)
83
+ latest_data = df.iloc[-1][["close", "volume"]].values
84
+ prediction = self.predict_growth(latest_data)
85
+
86
+ # Decision-making based on prediction and sentiment
87
+ if prediction == 1 and sentiment_score > 0.5: # Strong buy signal
88
+ self.execute_trade(symbol, "BUY")
89
+ elif prediction == 0 and sentiment_score < -0.5: # Strong sell signal
90
+ self.execute_trade(symbol, "SELL")
91
+
92
+ time.sleep(300) # Wait 5 minutes before checking again
93
+
94
+ if __name__ == "__main__":
95
+ bot = ExplosiveGrowthBot()
96
+ bot.run()
97
+