Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -85,6 +85,7 @@ def fetch_okx_symbols():
|
|
85 |
symbols = [item["instId"] for item in data if item.get("instType") == "SPOT"]
|
86 |
return ["BTC-USDT"] + symbols if symbols else ["BTC-USDT"]
|
87 |
except Exception as e:
|
|
|
88 |
return ["BTC-USDT"]
|
89 |
|
90 |
# Fetch historical candle data from OKX API
|
@@ -94,8 +95,16 @@ def fetch_okx_candles(symbol, timeframe="1H", total=2000):
|
|
94 |
|
95 |
for _ in range(calls_needed):
|
96 |
params = {"instId": symbol, "bar": timeframe, "limit": 300}
|
97 |
-
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
if not data:
|
101 |
break
|
@@ -115,5 +124,257 @@ def fetch_okx_candles(symbol, timeframe="1H", total=2000):
|
|
115 |
|
116 |
df_all = pd.concat(all_data)
|
117 |
|
118 |
-
|
119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
symbols = [item["instId"] for item in data if item.get("instType") == "SPOT"]
|
86 |
return ["BTC-USDT"] + symbols if symbols else ["BTC-USDT"]
|
87 |
except Exception as e:
|
88 |
+
print(f"Error fetching symbols: {e}")
|
89 |
return ["BTC-USDT"]
|
90 |
|
91 |
# Fetch historical candle data from OKX API
|
|
|
95 |
|
96 |
for _ in range(calls_needed):
|
97 |
params = {"instId": symbol, "bar": timeframe, "limit": 300}
|
98 |
+
try:
|
99 |
+
resp = requests.get(OKX_CANDLE_ENDPOINT, params=params)
|
100 |
+
resp.raise_for_status() # Raise HTTPError for bad responses (4xx or 5xx)
|
101 |
+
data = resp.json().get("data", [])
|
102 |
+
except requests.exceptions.RequestException as e:
|
103 |
+
print(f"Error fetching candles: {e}")
|
104 |
+
return pd.DataFrame()
|
105 |
+
except (ValueError, KeyError) as e:
|
106 |
+
print(f"Error parsing candle data: {e}")
|
107 |
+
return pd.DataFrame()
|
108 |
|
109 |
if not data:
|
110 |
break
|
|
|
124 |
|
125 |
df_all = pd.concat(all_data)
|
126 |
|
127 |
+
# Convert timestamps to datetime and calculate indicators
|
128 |
+
df_all["timestamp"] = pd.to_datetime(df_all["timestamp"], unit="ms")
|
129 |
+
numeric_cols = ["open", "high", "low", "close"]
|
130 |
+
df_all[numeric_cols] = df_all[numeric_cols].astype(float)
|
131 |
+
df_all = calculate_technical_indicators(df_all)
|
132 |
+
|
133 |
+
return df_all
|
134 |
+
|
135 |
+
# Prepare data for Prophet forecasting
|
136 |
+
def prepare_data_for_prophet(df):
|
137 |
+
if df.empty:
|
138 |
+
return pd.DataFrame(columns=["ds", "y"])
|
139 |
+
df_prophet = df.rename(columns={"timestamp": "ds", "close": "y"})
|
140 |
+
return df_prophet[["ds", "y"]]
|
141 |
+
|
142 |
+
# Perform forecasting using Prophet
|
143 |
+
def prophet_forecast(df_prophet, periods=10, freq="h", daily_seasonality=False, weekly_seasonality=False, yearly_seasonality=False, seasonality_mode="additive", changepoint_prior_scale=0.05):
|
144 |
+
if df_prophet.empty:
|
145 |
+
return pd.DataFrame(), "No data for Prophet."
|
146 |
+
|
147 |
+
try:
|
148 |
+
model = Prophet(
|
149 |
+
daily_seasonality=daily_seasonality,
|
150 |
+
weekly_seasonality=weekly_seasonality,
|
151 |
+
yearly_seasonality=yearly_seasonality,
|
152 |
+
seasonality_mode=seasonality_mode,
|
153 |
+
changepoint_prior_scale=changepoint_prior_scale,
|
154 |
+
)
|
155 |
+
model.fit(df_prophet)
|
156 |
+
future = model.make_future_dataframe(periods=periods, freq=freq)
|
157 |
+
forecast = model.predict(future)
|
158 |
+
return forecast, ""
|
159 |
+
except Exception as e:
|
160 |
+
return pd.DataFrame(), f"Forecast error: {e}"
|
161 |
+
|
162 |
+
# Wrapper function for forecasting
|
163 |
+
def prophet_wrapper(df_prophet, forecast_steps, freq, daily_seasonality, weekly_seasonality, yearly_seasonality, seasonality_mode, changepoint_prior_scale):
|
164 |
+
if len(df_prophet) < 10:
|
165 |
+
return pd.DataFrame(), "Not enough data for forecasting (need >=10 rows)."
|
166 |
+
|
167 |
+
full_forecast, err = prophet_forecast(
|
168 |
+
df_prophet,
|
169 |
+
periods=forecast_steps,
|
170 |
+
freq=freq,
|
171 |
+
daily_seasonality=daily_seasonality,
|
172 |
+
weekly_seasonality=weekly_seasonality,
|
173 |
+
yearly_seasonality=yearly_seasonality,
|
174 |
+
seasonality_mode=seasonality_mode,
|
175 |
+
changepoint_prior_scale=changepoint_prior_scale,
|
176 |
+
)
|
177 |
+
if err:
|
178 |
+
return pd.DataFrame(), err
|
179 |
+
|
180 |
+
future_only = full_forecast.loc[len(df_prophet):, ["ds", "yhat", "yhat_lower", "yhat_upper"]]
|
181 |
+
return future_only, ""
|
182 |
+
|
183 |
+
# Create forecast plot
|
184 |
+
def create_forecast_plot(forecast_df):
|
185 |
+
if forecast_df.empty:
|
186 |
+
return go.Figure()
|
187 |
+
|
188 |
+
fig = go.Figure()
|
189 |
+
fig.add_trace(go.Scatter(
|
190 |
+
x=forecast_df["ds"],
|
191 |
+
y=forecast_df["yhat"],
|
192 |
+
mode="lines",
|
193 |
+
name="Forecast",
|
194 |
+
line=dict(color="blue", width=2)
|
195 |
+
))
|
196 |
+
|
197 |
+
fig.add_trace(go.Scatter(
|
198 |
+
x=forecast_df["ds"],
|
199 |
+
y=forecast_df["yhat_lower"],
|
200 |
+
fill=None,
|
201 |
+
mode="lines",
|
202 |
+
line=dict(width=0),
|
203 |
+
showlegend=True,
|
204 |
+
name="Lower Bound"
|
205 |
+
))
|
206 |
+
|
207 |
+
fig.add_trace(go.Scatter(
|
208 |
+
x=forecast_df["ds"],
|
209 |
+
y=forecast_df["yhat_upper"],
|
210 |
+
fill="tonexty",
|
211 |
+
mode="lines",
|
212 |
+
line=dict(width=0),
|
213 |
+
name="Upper Bound"
|
214 |
+
))
|
215 |
+
|
216 |
+
fig.update_layout(
|
217 |
+
title="Price Forecast",
|
218 |
+
xaxis_title="Time",
|
219 |
+
yaxis_title="Price",
|
220 |
+
hovermode="x unified",
|
221 |
+
template="plotly_white",
|
222 |
+
)
|
223 |
+
return fig
|
224 |
+
|
225 |
+
# Function to display forecast and technical analysis charts
|
226 |
+
def display_forecast(symbol, timeframe, forecast_steps, total_candles, daily_seasonality, weekly_seasonality, yearly_seasonality, seasonality_mode, changepoint_prior_scale):
|
227 |
+
df_raw, forecast_df, error = predict(
|
228 |
+
symbol=symbol,
|
229 |
+
timeframe=timeframe,
|
230 |
+
forecast_steps=forecast_steps,
|
231 |
+
total_candles=total_candles,
|
232 |
+
daily_seasonality=daily_seasonality,
|
233 |
+
weekly_seasonality=weekly_seasonality,
|
234 |
+
yearly_seasonality=yearly_seasonality,
|
235 |
+
seasonality_mode=seasonality_mode,
|
236 |
+
changepoint_prior_scale=changepoint_prior_scale
|
237 |
+
)
|
238 |
+
|
239 |
+
if error:
|
240 |
+
return None, None, None, None, pd.DataFrame() # Return empty dataframe for forecast_df
|
241 |
+
|
242 |
+
forecast_plot = create_forecast_plot(forecast_df)
|
243 |
+
tech_plot, rsi_plot, macd_plot = create_technical_charts(df_raw)
|
244 |
+
|
245 |
+
# Prepare forecast data for the Dataframe output
|
246 |
+
forecast_df_display = forecast_df.loc[:, ["ds", "yhat", "yhat_lower", "yhat_upper"]].copy()
|
247 |
+
forecast_df_display.rename(columns={"ds": "Date", "yhat": "Forecast", "yhat_lower": "Lower Bound", "yhat_upper": "Upper Bound"}, inplace=True)
|
248 |
+
|
249 |
+
return forecast_plot, tech_plot, rsi_plot, macd_plot, forecast_df_display
|
250 |
+
|
251 |
+
# Main prediction function
|
252 |
+
def predict(symbol, timeframe, forecast_steps, total_candles, daily_seasonality, weekly_seasonality, yearly_seasonality, seasonality_mode, changepoint_prior_scale):
|
253 |
+
okx_bar = TIMEFRAME_MAPPING.get(timeframe, "1H")
|
254 |
+
df_raw = fetch_okx_candles(symbol=symbol, timeframe=okx_bar, total=total_candles)
|
255 |
+
|
256 |
+
if df_raw.empty:
|
257 |
+
return pd.DataFrame(), pd.DataFrame(), "No data fetched."
|
258 |
+
|
259 |
+
df_prophet = prepare_data_for_prophet(df_raw)
|
260 |
+
freq = "h" if "h" in timeframe.lower() else "d"
|
261 |
+
|
262 |
+
future_df, err2 = prophet_wrapper(
|
263 |
+
df_prophet,
|
264 |
+
forecast_steps,
|
265 |
+
freq,
|
266 |
+
daily_seasonality,
|
267 |
+
weekly_seasonality,
|
268 |
+
yearly_seasonality,
|
269 |
+
seasonality_mode,
|
270 |
+
changepoint_prior_scale,
|
271 |
+
)
|
272 |
+
|
273 |
+
if err2:
|
274 |
+
return pd.DataFrame(), pd.DataFrame(), err2
|
275 |
+
|
276 |
+
return df_raw, future_df, ""
|
277 |
+
|
278 |
+
|
279 |
+
# Main Gradio app setup
|
280 |
+
def main():
|
281 |
+
symbols = fetch_okx_symbols()
|
282 |
+
|
283 |
+
with gr.Blocks(theme=gr.themes.Base()) as demo:
|
284 |
+
# Header
|
285 |
+
with gr.Row():
|
286 |
+
gr.Markdown("# CryptoVision")
|
287 |
+
|
288 |
+
# Market Selection and Forecast Parameters
|
289 |
+
with gr.Row():
|
290 |
+
with gr.Column(scale=1):
|
291 |
+
gr.Markdown("### Market Selection")
|
292 |
+
symbol_dd = gr.Dropdown(
|
293 |
+
label="Trading Pair",
|
294 |
+
choices=symbols,
|
295 |
+
value="BTC-USDT"
|
296 |
+
)
|
297 |
+
timeframe_dd = gr.Dropdown(
|
298 |
+
label="Timeframe",
|
299 |
+
choices=list(TIMEFRAME_MAPPING.keys()),
|
300 |
+
value="1h"
|
301 |
+
)
|
302 |
+
with gr.Column(scale=1):
|
303 |
+
gr.Markdown("### Forecast Parameters")
|
304 |
+
forecast_steps_slider = gr.Slider(
|
305 |
+
label="Forecast Steps",
|
306 |
+
minimum=1,
|
307 |
+
maximum=100,
|
308 |
+
value=24,
|
309 |
+
step=1
|
310 |
+
)
|
311 |
+
total_candles_slider = gr.Slider(
|
312 |
+
label="Historical Candles",
|
313 |
+
minimum=300,
|
314 |
+
maximum=3000,
|
315 |
+
value=2000,
|
316 |
+
step=100
|
317 |
+
)
|
318 |
+
|
319 |
+
# Advanced Settings
|
320 |
+
with gr.Row():
|
321 |
+
with gr.Column():
|
322 |
+
gr.Markdown("### Advanced Settings")
|
323 |
+
daily_box = gr.Checkbox(label="Daily Seasonality", value=True)
|
324 |
+
weekly_box = gr.Checkbox(label="Weekly Seasonality", value=True)
|
325 |
+
yearly_box = gr.Checkbox(label="Yearly Seasonality", value=False)
|
326 |
+
seasonality_mode_dd = gr.Dropdown(
|
327 |
+
label="Seasonality Mode",
|
328 |
+
choices=["additive", "multiplicative"],
|
329 |
+
value="additive"
|
330 |
+
)
|
331 |
+
changepoint_scale_slider = gr.Slider(
|
332 |
+
label="Changepoint Prior Scale",
|
333 |
+
minimum=0.01,
|
334 |
+
maximum=1.0,
|
335 |
+
step=0.01,
|
336 |
+
value=0.05
|
337 |
+
)
|
338 |
+
|
339 |
+
# Generate Forecast Button
|
340 |
+
forecast_btn = gr.Button("Generate Forecast", variant="primary", size="lg")
|
341 |
+
|
342 |
+
# Output Plots
|
343 |
+
with gr.Row():
|
344 |
+
forecast_plot = gr.Plot(label="Price Forecast")
|
345 |
+
|
346 |
+
with gr.Row():
|
347 |
+
tech_plot = gr.Plot(label="Technical Analysis")
|
348 |
+
rsi_plot = gr.Plot(label="RSI Indicator")
|
349 |
+
|
350 |
+
with gr.Row():
|
351 |
+
macd_plot = gr.Plot(label="MACD")
|
352 |
+
|
353 |
+
# Output Data Table
|
354 |
+
forecast_df = gr.Dataframe(
|
355 |
+
label="Forecast Data",
|
356 |
+
headers=["Date", "Forecast", "Lower Bound", "Upper Bound"]
|
357 |
+
)
|
358 |
+
|
359 |
+
# Button click functionality
|
360 |
+
forecast_btn.click(
|
361 |
+
fn=display_forecast,
|
362 |
+
inputs=[
|
363 |
+
symbol_dd,
|
364 |
+
timeframe_dd,
|
365 |
+
forecast_steps_slider,
|
366 |
+
total_candles_slider,
|
367 |
+
daily_box,
|
368 |
+
weekly_box,
|
369 |
+
yearly_box,
|
370 |
+
seasonality_mode_dd,
|
371 |
+
changepoint_scale_slider,
|
372 |
+
],
|
373 |
+
outputs=[forecast_plot, tech_plot, rsi_plot, macd_plot, forecast_df]
|
374 |
+
)
|
375 |
+
|
376 |
+
return demo
|
377 |
+
|
378 |
+
if __name__ == "__main__":
|
379 |
+
app = main()
|
380 |
+
app.launch()
|