import requests import pandas as pd import numpy as np from sklearn.ensemble import RandomForestClassifier from textblob import TextBlob import tweepy import time class ExplosiveGrowthBot: def __init__(self): self.api_key = "YOUR_BINANCE_API_KEY" self.base_url = "https://api.binance.com" self.model = RandomForestClassifier() self.data = pd.DataFrame() self.twitter_api = self.setup_twitter_api() def setup_twitter_api(self): """Set up Twitter API for sentiment analysis.""" consumer_key = "YOUR_TWITTER_CONSUMER_KEY" consumer_secret = "YOUR_TWITTER_CONSUMER_SECRET" access_token = "YOUR_TWITTER_ACCESS_TOKEN" access_token_secret = "YOUR_TWITTER_ACCESS_SECRET" auth = tweepy.OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_token_secret) return tweepy.API(auth) def fetch_market_data(self, symbol="BTCUSDT", interval="1h", limit=100): """Fetch historical market data from Binance.""" url = f"{self.base_url}/api/v3/klines" params = {"symbol": symbol, "interval": interval, "limit": limit} response = requests.get(url, params=params) if response.status_code == 200: data = response.json() df = pd.DataFrame(data, columns=["timestamp", "open", "high", "low", "close", "volume", "_", "_", "_", "_", "_"]) df["close"] = df["close"].astype(float) df["volume"] = df["volume"].astype(float) return df else: print("Error fetching market data:", response.text) return None def analyze_sentiment(self, keyword): """Analyze sentiment from Twitter.""" tweets = self.twitter_api.search_tweets(q=keyword, count=100, lang="en") sentiments = [] for tweet in tweets: analysis = TextBlob(tweet.text) sentiments.append(analysis.sentiment.polarity) return np.mean(sentiments) def train_model(self, df): """Train the AI model to predict explosive growth.""" df["target"] = (df["close"].pct_change() > 0.05).astype(int) # Label: 1 if price increased by >5% features = df[["close", "volume"]].dropna() target = df["target"].dropna() self.model.fit(features[:-1], target) def predict_growth(self, latest_data): """Predict whether the asset will experience explosive growth.""" prediction = self.model.predict([latest_data]) return prediction[0] def execute_trade(self, symbol, action): """Simulate trade execution.""" print(f"Executing {action} trade for {symbol}...") def run(self): """Main loop for the bot.""" symbols_to_watch = ["BTCUSDT", "ETHUSDT", "DOGEUSDT"] while True: for symbol in symbols_to_watch: # Fetch market data df = self.fetch_market_data(symbol=symbol) if df is not None: # Analyze sentiment sentiment_score = self.analyze_sentiment(symbol.replace("USDT", "")) print(f"Sentiment score for {symbol}: {sentiment_score}") # Train model and make predictions self.train_model(df) latest_data = df.iloc[-1][["close", "volume"]].values prediction = self.predict_growth(latest_data) # Decision-making based on prediction and sentiment if prediction == 1 and sentiment_score > 0.5: # Strong buy signal self.execute_trade(symbol, "BUY") elif prediction == 0 and sentiment_score < -0.5: # Strong sell signal self.execute_trade(symbol, "SELL") time.sleep(300) # Wait 5 minutes before checking again if __name__ == "__main__": bot = ExplosiveGrowthBot() bot.run()