from sklearn.ensemble import RandomForestClassifier model = RandomForestClassifier() def train_model(df): """Train the AI model.""" df["target"] = (df["close"].pct_change() > 0.05).astype(int) # Label: 1 if price increased by >5% features = df[["close", "volume"]].dropna() target = df["target"].dropna() model.fit(features[:-1], target) def predict_growth(latest_data): """Predict explosive growth.""" return model.predict([latest_data])