Delete NLP_QA_Tool
Browse files- NLP_QA_Tool/.DS_Store +0 -0
- NLP_QA_Tool/.github/workflows/main.yml +0 -19
- NLP_QA_Tool/.gitignore +0 -47
- NLP_QA_Tool/.streamlit/config.toml +0 -6
- NLP_QA_Tool/.vscode/settings.json +0 -11
- NLP_QA_Tool/Dockerfile +0 -29
- NLP_QA_Tool/README.md +0 -108
- NLP_QA_Tool/__pycache__/document_qa_engine.cpython-310.pyc +0 -0
- NLP_QA_Tool/__pycache__/utils.cpython-310.pyc +0 -0
- NLP_QA_Tool/app.py +0 -241
- NLP_QA_Tool/authenticator_config.yaml +0 -15
- NLP_QA_Tool/document_qa_engine.py +0 -141
- NLP_QA_Tool/requirements.txt +0 -18
- NLP_QA_Tool/resources/ml_logo.png +0 -0
- NLP_QA_Tool/resources/puma.png +0 -0
- NLP_QA_Tool/utils.py +0 -56
- NLP_QA_Tool/utils/__pycache__/config.cpython-38.pyc +0 -0
- NLP_QA_Tool/utils/__pycache__/haystack.cpython-38.pyc +0 -0
- NLP_QA_Tool/utils/__pycache__/ui.cpython-38.pyc +0 -0
- NLP_QA_Tool/utils/check_pydantic_version.py +0 -26
- NLP_QA_Tool/utils/config.py +0 -43
- NLP_QA_Tool/utils/haystack.py +0 -124
- NLP_QA_Tool/utils/ui.py +0 -16
NLP_QA_Tool/.DS_Store
DELETED
Binary file (10.2 kB)
|
|
NLP_QA_Tool/.github/workflows/main.yml
DELETED
@@ -1,19 +0,0 @@
|
|
1 |
-
name: Sync to Hugging Face hub
|
2 |
-
on:
|
3 |
-
push:
|
4 |
-
branches: [puma_demo]
|
5 |
-
# to run this workflow manually from the Actions tab
|
6 |
-
workflow_dispatch:
|
7 |
-
|
8 |
-
jobs:
|
9 |
-
sync-to-hub:
|
10 |
-
runs-on: ubuntu-latest
|
11 |
-
steps:
|
12 |
-
- uses: actions/checkout@v3
|
13 |
-
with:
|
14 |
-
fetch-depth: 0
|
15 |
-
lfs: true
|
16 |
-
- name: Push to hub
|
17 |
-
env:
|
18 |
-
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
19 |
-
run: git push https://hkoppen:[email protected]/spaces/MachineLearningReply/q-and-a-tool-custom-logo puma_demo
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
NLP_QA_Tool/.gitignore
DELETED
@@ -1,47 +0,0 @@
|
|
1 |
-
# See https://help.github.com/articles/ignoring-files/ for more about ignoring files.
|
2 |
-
|
3 |
-
# dependencies
|
4 |
-
node_modules
|
5 |
-
.pnp
|
6 |
-
.pnp.js
|
7 |
-
|
8 |
-
# testing
|
9 |
-
coverage
|
10 |
-
|
11 |
-
# next.js
|
12 |
-
.next/
|
13 |
-
out/
|
14 |
-
build
|
15 |
-
|
16 |
-
# misc
|
17 |
-
.DS_Store
|
18 |
-
*.pem
|
19 |
-
|
20 |
-
# debug
|
21 |
-
npm-debug.log*
|
22 |
-
yarn-debug.log*
|
23 |
-
yarn-error.log*
|
24 |
-
.pnpm-debug.log*
|
25 |
-
|
26 |
-
# local env files
|
27 |
-
.env.local
|
28 |
-
.env.development.local
|
29 |
-
.env.test.local
|
30 |
-
.env.production.local
|
31 |
-
|
32 |
-
# turbo
|
33 |
-
.turbo
|
34 |
-
|
35 |
-
.contentlayer
|
36 |
-
.env
|
37 |
-
.vercel
|
38 |
-
.vscode
|
39 |
-
|
40 |
-
# JetBrains
|
41 |
-
.idea
|
42 |
-
|
43 |
-
# VSCode
|
44 |
-
__pycache__/*
|
45 |
-
|
46 |
-
# datasets directory is used for local development
|
47 |
-
/datasets/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
NLP_QA_Tool/.streamlit/config.toml
DELETED
@@ -1,6 +0,0 @@
|
|
1 |
-
[theme]
|
2 |
-
primaryColor = "#E694FF"
|
3 |
-
backgroundColor = "#FFFFFF"
|
4 |
-
secondaryBackgroundColor = "#F0F0F0"
|
5 |
-
textColor = "#262730"
|
6 |
-
font = "sans serif"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
NLP_QA_Tool/.vscode/settings.json
DELETED
@@ -1,11 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"python.languageServer": "Pylance",
|
3 |
-
"python.analysis.typeCheckingMode": "basic",
|
4 |
-
"typescript.tsserver.maxTsServerMemory": 3072,
|
5 |
-
"typescript.tsserver.watchOptions": {
|
6 |
-
"watchFile": "dynamicPriorityPolling"
|
7 |
-
},
|
8 |
-
"javascript.suggest.includeAutomaticOptionalChainCompletions": false,
|
9 |
-
"debug.saveBeforeStart": "none",
|
10 |
-
"c3.welcome.showFeatureHighlight": false
|
11 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
NLP_QA_Tool/Dockerfile
DELETED
@@ -1,29 +0,0 @@
|
|
1 |
-
FROM python:3.10-slim
|
2 |
-
|
3 |
-
WORKDIR /app
|
4 |
-
|
5 |
-
RUN apt-get update && apt-get install -y \
|
6 |
-
build-essential \
|
7 |
-
curl \
|
8 |
-
software-properties-common \
|
9 |
-
git \
|
10 |
-
&& rm -rf /var/lib/apt/lists/*
|
11 |
-
|
12 |
-
COPY requirements.txt .
|
13 |
-
|
14 |
-
RUN pip3 install -r requirements.txt
|
15 |
-
|
16 |
-
COPY . .
|
17 |
-
|
18 |
-
# extract version
|
19 |
-
COPY .git ./.git
|
20 |
-
RUN git rev-parse --short HEAD > revision.txt
|
21 |
-
RUN rm -rf ./.git
|
22 |
-
|
23 |
-
EXPOSE 8501
|
24 |
-
|
25 |
-
HEALTHCHECK CMD curl --fail http://localhost:8501/_stcore/health
|
26 |
-
|
27 |
-
ENV PYTHONPATH "${PYTHONPATH}:."
|
28 |
-
|
29 |
-
ENTRYPOINT ["streamlit", "run", "app.py", "--server.port=8501", "--server.address=0.0.0.0"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
NLP_QA_Tool/README.md
DELETED
@@ -1,108 +0,0 @@
|
|
1 |
-
---
|
2 |
-
title: NLP Q&A Tool
|
3 |
-
emoji: 👑
|
4 |
-
colorFrom: indigo
|
5 |
-
colorTo: indigo
|
6 |
-
sdk: streamlit
|
7 |
-
sdk_version: 1.32.2
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
-
---
|
11 |
-
|
12 |
-
# Document Insights - Extractive & Generative Methods using Haystack
|
13 |
-
|
14 |
-
This template [Streamlit](https://docs.streamlit.io/) app set up for
|
15 |
-
simple [Haystack search applications](https://docs.haystack.deepset.ai/docs/semantic_search). The template is ready to
|
16 |
-
do QA with **Retrievel Augmented Generation**, or **Ectractive QA**
|
17 |
-
|
18 |
-
Below you will also find instructions on how you
|
19 |
-
could [push this to Hugging Face Spaces 🤗](#pushing-to-hugging-face-spaces-).
|
20 |
-
|
21 |
-
## Installation and Running
|
22 |
-
|
23 |
-
### Local development
|
24 |
-
|
25 |
-
To run the bare application which does _nothing_:
|
26 |
-
|
27 |
-
1. Install requirements: `pip install -r requirements.txt`
|
28 |
-
2. Run the streamlit app: `streamlit run app.py`
|
29 |
-
|
30 |
-
This will start up the app on `localhost:8501` where you will find a simple search bar. Before you start editing, you'll
|
31 |
-
notice that the app will only show you instructions on what to edit.
|
32 |
-
|
33 |
-
### Docker
|
34 |
-
|
35 |
-
To run the app in a Docker container:
|
36 |
-
|
37 |
-
1. Build the Docker image: `docker build -t haystack-streamlit .`
|
38 |
-
2. Run the Docker container: `docker run -p 8501:8501 haystack-streamlit` (make sure to bind any other ports you need)
|
39 |
-
3. Open your browser and go to `http://localhost:8501`
|
40 |
-
|
41 |
-
### Repo structure
|
42 |
-
|
43 |
-
- `./utils`: This is where we have 3 files:
|
44 |
-
- `config.py`: This file extracts all of the configuration settings from a `.env` file. For some config settings, it
|
45 |
-
uses default values. An example of this is
|
46 |
-
in [this demo project](https://github.com/TuanaCelik/should-i-follow/blob/main/utils/config.py).
|
47 |
-
- `haystack.py`: Here you will find some functions already set up for you to start creating your Haystack search
|
48 |
-
pipeline. It includes 2 main functions called `start_haystack()` which is what we use to create a pipeline and
|
49 |
-
cache it, and `query()` which is the function called by `app.py` once a user query is received.
|
50 |
-
- `ui.py`: Use this file for any UI and initial value setups.
|
51 |
-
- `app.py`: This is the main Streamlit application file that we will run. In its current state it has a simple search
|
52 |
-
bar, a 'Run' button, and a response that you can highlight answers with.
|
53 |
-
- `requirements.txt`: This file includes the required libraries to run the Streamlit app.
|
54 |
-
- `document_qa_engine.py`: This file includes the QA pipeline with Haystack.
|
55 |
-
|
56 |
-
### What to edit?
|
57 |
-
|
58 |
-
There are default pipelines both in `start_haystack_extractive()` and `start_haystack_rag()`
|
59 |
-
|
60 |
-
- Change the pipelines to use the embedding models, extractive or generative models as you need.
|
61 |
-
- If using the `rag` task, change the `default_prompt_template` to use one of our available ones
|
62 |
-
on [PromptHub](https://prompthub.deepset.ai) or create your own `PromptTemplate`
|
63 |
-
|
64 |
-
### Using local LLM models
|
65 |
-
|
66 |
-
To use the `local LLM` mode you can use [LM Studio](https://lmstudio.ai/) or [Ollama](https://ollama.com/).
|
67 |
-
For more info on how to run the app with a local LLM model please refer to the documentation of the tool you are using.
|
68 |
-
The `local_llm` mode expects an API available at `http://localhost:1234/v1`.
|
69 |
-
|
70 |
-
## Pushing to Hugging Face Spaces 🤗
|
71 |
-
|
72 |
-
Below is an example GitHub action that will let you push your Streamlit app straight to the Hugging Face Hub as a Space.
|
73 |
-
|
74 |
-
A few things to pay attention to:
|
75 |
-
|
76 |
-
1. Create a New Space on Hugging Face with the Streamlit SDK.
|
77 |
-
2. Create a Hugging Face token on your HF account.
|
78 |
-
3. Create a secret on your GitHub repo called `HF_TOKEN` and put your Hugging Face token here.
|
79 |
-
4. If you're using DocumentStores or APIs that require some keys/tokens, make sure these are provided as a secret for
|
80 |
-
your HF Space too!
|
81 |
-
5. This readme is set up to tell HF spaces that it's using streamlit and that the app is running on `app.py`, make any
|
82 |
-
changes to the frontmatter of this readme to display the title, emoji etc you desire.
|
83 |
-
6. Create a file in `.github/workflows/hf_sync.yml`. Here's an example that you can change with your own information,
|
84 |
-
and an [example workflow](https://github.com/TuanaCelik/should-i-follow/blob/main/.github/workflows/hf_sync.yml)
|
85 |
-
working for the [Should I Follow demo](https://huggingface.co/spaces/deepset/should-i-follow)
|
86 |
-
|
87 |
-
```yaml
|
88 |
-
name: Sync to Hugging Face hub
|
89 |
-
on:
|
90 |
-
push:
|
91 |
-
branches: [ main ]
|
92 |
-
|
93 |
-
# to run this workflow manually from the Actions tab
|
94 |
-
workflow_dispatch:
|
95 |
-
|
96 |
-
jobs:
|
97 |
-
sync-to-hub:
|
98 |
-
runs-on: ubuntu-latest
|
99 |
-
steps:
|
100 |
-
- uses: actions/checkout@v2
|
101 |
-
with:
|
102 |
-
fetch-depth: 0
|
103 |
-
lfs: true
|
104 |
-
- name: Push to hub
|
105 |
-
env:
|
106 |
-
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
107 |
-
run: git push --force https://{YOUR_HF_USERNAME}:$HF_TOKEN@{YOUR_HF_SPACE_REPO} main
|
108 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
NLP_QA_Tool/__pycache__/document_qa_engine.cpython-310.pyc
DELETED
Binary file (5.11 kB)
|
|
NLP_QA_Tool/__pycache__/utils.cpython-310.pyc
DELETED
Binary file (2.61 kB)
|
|
NLP_QA_Tool/app.py
DELETED
@@ -1,241 +0,0 @@
|
|
1 |
-
from dotenv import load_dotenv
|
2 |
-
import pandas as pd
|
3 |
-
import streamlit as st
|
4 |
-
import streamlit_authenticator as stauth
|
5 |
-
from streamlit_modal import Modal
|
6 |
-
|
7 |
-
from utils import new_file, clear_memory, append_documentation_to_sidebar, load_authenticator_config, init_qa, \
|
8 |
-
append_header
|
9 |
-
from haystack.document_stores.in_memory import InMemoryDocumentStore
|
10 |
-
from haystack import Document
|
11 |
-
|
12 |
-
load_dotenv()
|
13 |
-
|
14 |
-
OPENAI_MODELS = ['gpt-3.5-turbo',
|
15 |
-
"gpt-4",
|
16 |
-
"gpt-4-1106-preview"]
|
17 |
-
|
18 |
-
OPEN_MODELS = [
|
19 |
-
'mistralai/Mistral-7B-Instruct-v0.1',
|
20 |
-
'HuggingFaceH4/zephyr-7b-beta'
|
21 |
-
]
|
22 |
-
|
23 |
-
|
24 |
-
def reset_chat_memory():
|
25 |
-
st.button(
|
26 |
-
'Reset chat memory',
|
27 |
-
key="reset-memory-button",
|
28 |
-
on_click=clear_memory,
|
29 |
-
help="Clear the conversational memory. Currently implemented to retain the 4 most recent messages.",
|
30 |
-
disabled=False)
|
31 |
-
|
32 |
-
|
33 |
-
def manage_files(modal, document_store):
|
34 |
-
open_modal = st.sidebar.button("Manage Files", use_container_width=True)
|
35 |
-
if open_modal:
|
36 |
-
modal.open()
|
37 |
-
|
38 |
-
if modal.is_open():
|
39 |
-
with modal.container():
|
40 |
-
uploaded_file = st.file_uploader(
|
41 |
-
"Upload a CV in PDF format",
|
42 |
-
type=("pdf",),
|
43 |
-
on_change=new_file(),
|
44 |
-
disabled=st.session_state['document_qa_model'] is None,
|
45 |
-
label_visibility="collapsed",
|
46 |
-
help="The document is used to answer your questions. The system will process the document and store it in a RAG to answer your questions.",
|
47 |
-
)
|
48 |
-
edited_df = st.data_editor(use_container_width=True, data=st.session_state['files'],
|
49 |
-
num_rows='dynamic',
|
50 |
-
column_order=['name', 'size', 'is_active'],
|
51 |
-
column_config={'name': {'editable': False}, 'size': {'editable': False},
|
52 |
-
'is_active': {'editable': True, 'type': 'checkbox',
|
53 |
-
'width': 100}}
|
54 |
-
)
|
55 |
-
st.session_state['files'] = pd.DataFrame(columns=['name', 'content', 'size', 'is_active'])
|
56 |
-
|
57 |
-
if uploaded_file:
|
58 |
-
st.session_state['file_uploaded'] = True
|
59 |
-
st.session_state['files'] = pd.concat([st.session_state['files'], edited_df])
|
60 |
-
with st.spinner('Processing the CV content...'):
|
61 |
-
store_file_in_table(document_store, uploaded_file)
|
62 |
-
ingest_document(uploaded_file)
|
63 |
-
|
64 |
-
|
65 |
-
def ingest_document(uploaded_file):
|
66 |
-
if not st.session_state['document_qa_model']:
|
67 |
-
st.warning('Please select a model to start asking questions')
|
68 |
-
else:
|
69 |
-
try:
|
70 |
-
st.session_state['document_qa_model'].ingest_pdf(uploaded_file)
|
71 |
-
st.success('Document processed successfully')
|
72 |
-
except Exception as e:
|
73 |
-
st.error(f"Error processing the document: {e}")
|
74 |
-
st.session_state['file_uploaded'] = False
|
75 |
-
|
76 |
-
|
77 |
-
def store_file_in_table(document_store, uploaded_file):
|
78 |
-
pdf_content = uploaded_file.getvalue()
|
79 |
-
st.session_state['pdf_content'] = pdf_content
|
80 |
-
st.session_state.messages = []
|
81 |
-
document = Document(content=pdf_content, meta={"name": uploaded_file.name})
|
82 |
-
df = pd.DataFrame(st.session_state['files'])
|
83 |
-
df['is_active'] = False
|
84 |
-
st.session_state['files'] = pd.concat([df, pd.DataFrame(
|
85 |
-
[{"name": uploaded_file.name, "content": pdf_content, "size": len(pdf_content),
|
86 |
-
"is_active": True}])])
|
87 |
-
document_store.write_documents([document])
|
88 |
-
|
89 |
-
|
90 |
-
def init_session_state():
|
91 |
-
st.session_state.setdefault('files', pd.DataFrame(columns=['name', 'content', 'size', 'is_active']))
|
92 |
-
st.session_state.setdefault('models', [])
|
93 |
-
st.session_state.setdefault('api_keys', {})
|
94 |
-
st.session_state.setdefault('current_selected_model', 'gpt-3.5-turbo')
|
95 |
-
st.session_state.setdefault('current_api_key', '')
|
96 |
-
st.session_state.setdefault('messages', [])
|
97 |
-
st.session_state.setdefault('pdf_content', None)
|
98 |
-
st.session_state.setdefault('memory', None)
|
99 |
-
st.session_state.setdefault('pdf', None)
|
100 |
-
st.session_state.setdefault('document_qa_model', None)
|
101 |
-
st.session_state.setdefault('file_uploaded', False)
|
102 |
-
|
103 |
-
|
104 |
-
def set_page_config():
|
105 |
-
st.set_page_config(
|
106 |
-
page_title="CV Insights AI Assistant",
|
107 |
-
page_icon=":shark:",
|
108 |
-
initial_sidebar_state="expanded",
|
109 |
-
layout="wide",
|
110 |
-
menu_items={
|
111 |
-
'Get Help': 'https://www.extremelycoolapp.com/help',
|
112 |
-
'Report a bug': "https://www.extremelycoolapp.com/bug",
|
113 |
-
'About': "# This is a header. This is an *extremely* cool app!"
|
114 |
-
}
|
115 |
-
)
|
116 |
-
|
117 |
-
|
118 |
-
def update_running_model(api_key, model):
|
119 |
-
st.session_state['api_keys'][model] = api_key
|
120 |
-
st.session_state['document_qa_model'] = init_qa(model, api_key)
|
121 |
-
|
122 |
-
|
123 |
-
def init_api_key_dict():
|
124 |
-
st.session_state['models'] = OPENAI_MODELS + list(OPEN_MODELS) + ['local LLM']
|
125 |
-
for model_name in OPENAI_MODELS:
|
126 |
-
st.session_state['api_keys'][model_name] = None
|
127 |
-
|
128 |
-
|
129 |
-
def display_chat_messages(chat_box, chat_input):
|
130 |
-
with chat_box:
|
131 |
-
if chat_input:
|
132 |
-
for message in st.session_state.messages:
|
133 |
-
with st.chat_message(message["role"]):
|
134 |
-
st.markdown(message["content"], unsafe_allow_html=True)
|
135 |
-
|
136 |
-
st.chat_message("user").markdown(chat_input)
|
137 |
-
with st.chat_message("assistant"):
|
138 |
-
# process user input and generate response
|
139 |
-
response = st.session_state['document_qa_model'].inference(chat_input, st.session_state.messages)
|
140 |
-
|
141 |
-
st.markdown(response)
|
142 |
-
st.session_state.messages.append({"role": "user", "content": chat_input})
|
143 |
-
st.session_state.messages.append({"role": "assistant", "content": response})
|
144 |
-
|
145 |
-
|
146 |
-
def setup_model_selection():
|
147 |
-
model = st.selectbox(
|
148 |
-
"Model:",
|
149 |
-
options=st.session_state['models'],
|
150 |
-
index=0, # default to the first model in the list gpt-3.5-turbo
|
151 |
-
placeholder="Select model",
|
152 |
-
help="Select an LLM:"
|
153 |
-
)
|
154 |
-
|
155 |
-
if model:
|
156 |
-
if model != st.session_state['current_selected_model']:
|
157 |
-
st.session_state['current_selected_model'] = model
|
158 |
-
if model == 'local LLM':
|
159 |
-
st.session_state['document_qa_model'] = init_qa(model)
|
160 |
-
|
161 |
-
api_key = st.sidebar.text_input("Enter LLM-authorization Key:", type="password",
|
162 |
-
disabled=st.session_state['current_selected_model'] == 'local LLM')
|
163 |
-
if api_key and api_key != st.session_state['current_api_key']:
|
164 |
-
update_running_model(api_key, model)
|
165 |
-
st.session_state['current_api_key'] = api_key
|
166 |
-
|
167 |
-
return model
|
168 |
-
|
169 |
-
|
170 |
-
def setup_task_selection(model):
|
171 |
-
# enable extractive and generative tasks if we're using a local LLM or an OpenAI model with an API key
|
172 |
-
if model == 'local LLM' or st.session_state['api_keys'].get(model):
|
173 |
-
task_options = ['Extractive', 'Generative']
|
174 |
-
else:
|
175 |
-
task_options = ['Extractive']
|
176 |
-
|
177 |
-
task_selection = st.sidebar.radio('Select the task:', task_options)
|
178 |
-
|
179 |
-
# TODO: Add the task selection logic here (initializing the model based on the task)
|
180 |
-
|
181 |
-
|
182 |
-
def setup_page_body():
|
183 |
-
chat_box = st.container(height=350, border=False)
|
184 |
-
chat_input = st.chat_input(
|
185 |
-
placeholder="Upload a document to start asking questions...",
|
186 |
-
disabled=not st.session_state['file_uploaded'],
|
187 |
-
)
|
188 |
-
if st.session_state['file_uploaded']:
|
189 |
-
display_chat_messages(chat_box, chat_input)
|
190 |
-
|
191 |
-
|
192 |
-
class StreamlitApp:
|
193 |
-
def __init__(self):
|
194 |
-
self.authenticator_config = load_authenticator_config()
|
195 |
-
self.document_store = InMemoryDocumentStore()
|
196 |
-
set_page_config()
|
197 |
-
self.authenticator = self.init_authenticator()
|
198 |
-
init_session_state()
|
199 |
-
init_api_key_dict()
|
200 |
-
|
201 |
-
def init_authenticator(self):
|
202 |
-
return stauth.Authenticate(
|
203 |
-
self.authenticator_config['credentials'],
|
204 |
-
self.authenticator_config['cookie']['name'],
|
205 |
-
self.authenticator_config['cookie']['key'],
|
206 |
-
self.authenticator_config['cookie']['expiry_days']
|
207 |
-
)
|
208 |
-
|
209 |
-
def setup_sidebar(self):
|
210 |
-
with st.sidebar:
|
211 |
-
st.sidebar.image("resources/puma.png", use_column_width=True)
|
212 |
-
|
213 |
-
# Sidebar for Task Selection
|
214 |
-
st.sidebar.header('Options:')
|
215 |
-
model = setup_model_selection()
|
216 |
-
setup_task_selection(model)
|
217 |
-
st.divider()
|
218 |
-
self.authenticator.logout()
|
219 |
-
reset_chat_memory()
|
220 |
-
modal = Modal("Manage Files", key="demo-modal")
|
221 |
-
manage_files(modal, self.document_store)
|
222 |
-
st.divider()
|
223 |
-
append_documentation_to_sidebar()
|
224 |
-
|
225 |
-
def run(self):
|
226 |
-
name, authentication_status, username = self.authenticator.login()
|
227 |
-
if authentication_status:
|
228 |
-
self.run_authenticated_app()
|
229 |
-
elif st.session_state["authentication_status"] is False:
|
230 |
-
st.error('Username/password is incorrect')
|
231 |
-
elif st.session_state["authentication_status"] is None:
|
232 |
-
st.warning('Please enter your username and password')
|
233 |
-
|
234 |
-
def run_authenticated_app(self):
|
235 |
-
self.setup_sidebar()
|
236 |
-
append_header()
|
237 |
-
setup_page_body()
|
238 |
-
|
239 |
-
|
240 |
-
app = StreamlitApp()
|
241 |
-
app.run()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
NLP_QA_Tool/authenticator_config.yaml
DELETED
@@ -1,15 +0,0 @@
|
|
1 |
-
credentials:
|
2 |
-
usernames:
|
3 |
-
mlreply:
|
4 |
-
email: [email protected]
|
5 |
-
failed_login_attempts: 0 # Will be managed automatically
|
6 |
-
logged_in: False # Will be managed automatically
|
7 |
-
name: ML Reply
|
8 |
-
password: mlreply # Will be hashed automatically
|
9 |
-
cookie:
|
10 |
-
expiry_days: 1
|
11 |
-
key: some_signature_key # Must be string
|
12 |
-
name: some_cookie_name
|
13 |
-
#pre-authorized:
|
14 |
-
# emails:
|
15 |
-
# - [email protected]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
NLP_QA_Tool/document_qa_engine.py
DELETED
@@ -1,141 +0,0 @@
|
|
1 |
-
from typing import List
|
2 |
-
|
3 |
-
from haystack.dataclasses import ChatMessage
|
4 |
-
from pypdf import PdfReader
|
5 |
-
from haystack.utils import Secret
|
6 |
-
from haystack import Pipeline, Document, component
|
7 |
-
|
8 |
-
from haystack.components.preprocessors import DocumentCleaner, DocumentSplitter
|
9 |
-
from haystack.components.writers import DocumentWriter
|
10 |
-
from haystack.components.embedders import SentenceTransformersDocumentEmbedder, SentenceTransformersTextEmbedder
|
11 |
-
from haystack.document_stores.in_memory import InMemoryDocumentStore
|
12 |
-
from haystack.components.retrievers.in_memory import InMemoryEmbeddingRetriever
|
13 |
-
from haystack.components.builders import DynamicChatPromptBuilder
|
14 |
-
from haystack.components.generators.chat import OpenAIChatGenerator, HuggingFaceTGIChatGenerator
|
15 |
-
from haystack.document_stores.types import DuplicatePolicy
|
16 |
-
|
17 |
-
SENTENCE_RETREIVER_MODEL = "sentence-transformers/all-MiniLM-L6-v2"
|
18 |
-
|
19 |
-
MAX_TOKENS = 500
|
20 |
-
|
21 |
-
template = """
|
22 |
-
As a professional HR recruiter given the following information, answer the question shortly and concisely in 1 or 2 sentences.
|
23 |
-
|
24 |
-
Context:
|
25 |
-
{% for document in documents %}
|
26 |
-
{{ document.content }}
|
27 |
-
{% endfor %}
|
28 |
-
|
29 |
-
Question: {{question}}
|
30 |
-
Answer:
|
31 |
-
"""
|
32 |
-
|
33 |
-
|
34 |
-
@component
|
35 |
-
class UploadedFileConverter:
|
36 |
-
"""
|
37 |
-
A component to convert uploaded PDF files to Documents
|
38 |
-
"""
|
39 |
-
|
40 |
-
@component.output_types(documents=List[Document])
|
41 |
-
def run(self, uploaded_file):
|
42 |
-
pdf = PdfReader(uploaded_file)
|
43 |
-
documents = []
|
44 |
-
# uploaded file name without .pdf at the end and with _ and page number at the end
|
45 |
-
name = uploaded_file.name.rstrip('.PDF') + '_'
|
46 |
-
for page in pdf.pages:
|
47 |
-
documents.append(
|
48 |
-
Document(
|
49 |
-
content=page.extract_text(),
|
50 |
-
meta={'name': name + f"_{page.page_number}"}))
|
51 |
-
return {"documents": documents}
|
52 |
-
|
53 |
-
|
54 |
-
def create_ingestion_pipeline(document_store):
|
55 |
-
doc_embedder = SentenceTransformersDocumentEmbedder(model=SENTENCE_RETREIVER_MODEL)
|
56 |
-
doc_embedder.warm_up()
|
57 |
-
|
58 |
-
pipeline = Pipeline()
|
59 |
-
pipeline.add_component("converter", UploadedFileConverter())
|
60 |
-
pipeline.add_component("cleaner", DocumentCleaner())
|
61 |
-
pipeline.add_component("splitter",
|
62 |
-
DocumentSplitter(split_by="passage", split_length=100, split_overlap=10))
|
63 |
-
pipeline.add_component("embedder", doc_embedder)
|
64 |
-
pipeline.add_component("writer",
|
65 |
-
DocumentWriter(document_store=document_store, policy=DuplicatePolicy.OVERWRITE))
|
66 |
-
|
67 |
-
pipeline.connect("converter", "cleaner")
|
68 |
-
pipeline.connect("cleaner", "splitter")
|
69 |
-
pipeline.connect("splitter", "embedder")
|
70 |
-
pipeline.connect("embedder", "writer")
|
71 |
-
return pipeline
|
72 |
-
|
73 |
-
|
74 |
-
def create_inference_pipeline(document_store, model_name, api_key):
|
75 |
-
if model_name == "local LLM":
|
76 |
-
generator = OpenAIChatGenerator(api_key=Secret.from_token("<local LLM doesn't need an API key>"),
|
77 |
-
model=model_name,
|
78 |
-
api_base_url="http://localhost:1234/v1",
|
79 |
-
generation_kwargs={"max_tokens": MAX_TOKENS}
|
80 |
-
)
|
81 |
-
elif "gpt" in model_name:
|
82 |
-
generator = OpenAIChatGenerator(api_key=Secret.from_token(api_key), model=model_name,
|
83 |
-
generation_kwargs={"max_tokens": MAX_TOKENS, "stream": False}
|
84 |
-
)
|
85 |
-
else:
|
86 |
-
generator = HuggingFaceTGIChatGenerator(token=Secret.from_token(api_key), model=model_name,
|
87 |
-
generation_kwargs={"max_new_tokens": MAX_TOKENS}
|
88 |
-
)
|
89 |
-
pipeline = Pipeline()
|
90 |
-
pipeline.add_component("text_embedder",
|
91 |
-
SentenceTransformersTextEmbedder(model=SENTENCE_RETREIVER_MODEL))
|
92 |
-
pipeline.add_component("retriever", InMemoryEmbeddingRetriever(document_store, top_k=3))
|
93 |
-
pipeline.add_component("prompt_builder",
|
94 |
-
DynamicChatPromptBuilder(runtime_variables=["query", "documents"]))
|
95 |
-
pipeline.add_component("llm", generator)
|
96 |
-
pipeline.connect("text_embedder.embedding", "retriever.query_embedding")
|
97 |
-
pipeline.connect("retriever.documents", "prompt_builder.documents")
|
98 |
-
pipeline.connect("prompt_builder.prompt", "llm.messages")
|
99 |
-
|
100 |
-
return pipeline
|
101 |
-
|
102 |
-
|
103 |
-
class DocumentQAEngine:
|
104 |
-
def __init__(self,
|
105 |
-
model_name,
|
106 |
-
api_key=None
|
107 |
-
):
|
108 |
-
self.api_key = api_key
|
109 |
-
self.model_name = model_name
|
110 |
-
document_store = InMemoryDocumentStore()
|
111 |
-
self.chunks = []
|
112 |
-
self.inference_pipeline = create_inference_pipeline(document_store, model_name, api_key)
|
113 |
-
self.pdf_ingestion_pipeline = create_ingestion_pipeline(document_store)
|
114 |
-
|
115 |
-
def ingest_pdf(self, uploaded_file):
|
116 |
-
self.pdf_ingestion_pipeline.run({"converter": {"uploaded_file": uploaded_file}})
|
117 |
-
|
118 |
-
def inference(self, query, input_messages: List[dict]):
|
119 |
-
system_message = ChatMessage.from_system(
|
120 |
-
"You are a professional HR recruiter that answers questions based on the content of the uploaded CV. in 1 or 2 sentences.")
|
121 |
-
messages = [system_message]
|
122 |
-
for message in input_messages:
|
123 |
-
if message["role"] == "user":
|
124 |
-
messages.append(ChatMessage.from_system(message["content"]))
|
125 |
-
else:
|
126 |
-
messages.append(
|
127 |
-
ChatMessage.from_user(message["content"]))
|
128 |
-
messages.append(ChatMessage.from_user("""
|
129 |
-
Relevant information from the uploaded CV:
|
130 |
-
{% for doc in documents %}
|
131 |
-
{{ doc.content }}
|
132 |
-
{% endfor %}
|
133 |
-
|
134 |
-
\nQuestion: {{query}}
|
135 |
-
\nAnswer:
|
136 |
-
"""))
|
137 |
-
res = self.inference_pipeline.run(data={"text_embedder": {"text": query},
|
138 |
-
"prompt_builder": {"prompt_source": messages,
|
139 |
-
"query": query
|
140 |
-
}})
|
141 |
-
return res["llm"]["replies"][0].content
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
NLP_QA_Tool/requirements.txt
DELETED
@@ -1,18 +0,0 @@
|
|
1 |
-
# Streamlit
|
2 |
-
streamlit~=1.32.2
|
3 |
-
streamlit-modal==0.1.2
|
4 |
-
streamlit-authenticator==0.3.2
|
5 |
-
streamlit-pdf-viewer==0.0.9
|
6 |
-
|
7 |
-
# LLM
|
8 |
-
haystack-ai~=2.0.0
|
9 |
-
sentence_transformers~=2.6.0
|
10 |
-
|
11 |
-
# Utils
|
12 |
-
pandas~=2.2.1
|
13 |
-
pypdf~=4.2.0
|
14 |
-
pytest~=8.1.1
|
15 |
-
python-dotenv~=1.0.1
|
16 |
-
|
17 |
-
# Dev Utils
|
18 |
-
watchdog
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
NLP_QA_Tool/resources/ml_logo.png
DELETED
Binary file (28.7 kB)
|
|
NLP_QA_Tool/resources/puma.png
DELETED
Binary file (18 kB)
|
|
NLP_QA_Tool/utils.py
DELETED
@@ -1,56 +0,0 @@
|
|
1 |
-
from document_qa_engine import DocumentQAEngine
|
2 |
-
|
3 |
-
import streamlit as st
|
4 |
-
|
5 |
-
import logging
|
6 |
-
from yaml import load, SafeLoader, YAMLError
|
7 |
-
|
8 |
-
|
9 |
-
def load_authenticator_config(file_path='authenticator_config.yaml'):
|
10 |
-
try:
|
11 |
-
with open(file_path, 'r') as file:
|
12 |
-
authenticator_config = load(file, Loader=SafeLoader)
|
13 |
-
return authenticator_config
|
14 |
-
except FileNotFoundError:
|
15 |
-
logging.error(f"File {file_path} not found.")
|
16 |
-
except YAMLError as error:
|
17 |
-
logging.error(f"Error parsing YAML file: {error}")
|
18 |
-
|
19 |
-
|
20 |
-
def new_file():
|
21 |
-
st.session_state['loaded_embeddings'] = None
|
22 |
-
st.session_state['doc_id'] = None
|
23 |
-
st.session_state['uploaded'] = True
|
24 |
-
clear_memory()
|
25 |
-
|
26 |
-
|
27 |
-
def clear_memory():
|
28 |
-
if st.session_state['memory']:
|
29 |
-
st.session_state['memory'].clear()
|
30 |
-
|
31 |
-
|
32 |
-
def init_qa(model, api_key=None):
|
33 |
-
print(f"Initializing QA with model: {model} and API key: {api_key}")
|
34 |
-
return DocumentQAEngine(model, api_key=api_key)
|
35 |
-
|
36 |
-
|
37 |
-
def append_header():
|
38 |
-
st.header('📄 Document Insights :rainbow[AI] Assistant 📚', divider='rainbow')
|
39 |
-
st.text("📥 Upload documents in PDF format. Get insights.. ask questions..")
|
40 |
-
|
41 |
-
|
42 |
-
def append_documentation_to_sidebar():
|
43 |
-
with st.expander("Disclaimer"):
|
44 |
-
st.markdown(
|
45 |
-
"""
|
46 |
-
:warning: Do not upload sensitive data. We **temporarily** store text from the uploaded PDF documents solely
|
47 |
-
for the purpose of processing your request, and we **do not assume responsibility** for any subsequent use
|
48 |
-
or handling of the data submitted to third parties LLMs.
|
49 |
-
""")
|
50 |
-
with st.expander("Documentation"):
|
51 |
-
st.markdown(
|
52 |
-
"""
|
53 |
-
Upload a CV as PDF document. Once the spinner stops, you can proceed to ask your questions. The answers will
|
54 |
-
be displayed in the right column. The system will answer your questions using the content of the document
|
55 |
-
and mark refrences over the PDF viewer.
|
56 |
-
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
NLP_QA_Tool/utils/__pycache__/config.cpython-38.pyc
DELETED
Binary file (1.47 kB)
|
|
NLP_QA_Tool/utils/__pycache__/haystack.cpython-38.pyc
DELETED
Binary file (3.59 kB)
|
|
NLP_QA_Tool/utils/__pycache__/ui.cpython-38.pyc
DELETED
Binary file (733 Bytes)
|
|
NLP_QA_Tool/utils/check_pydantic_version.py
DELETED
@@ -1,26 +0,0 @@
|
|
1 |
-
import pydantic
|
2 |
-
import os
|
3 |
-
import fileinput
|
4 |
-
|
5 |
-
def replace_string_in_files(folder_path, old_str, new_str):
|
6 |
-
for subdir, dirs, files in os.walk(folder_path):
|
7 |
-
for file in files:
|
8 |
-
file_path = os.path.join(subdir, file)
|
9 |
-
|
10 |
-
# Check if the file is a text file (you can modify this condition based on your needs)
|
11 |
-
if file.endswith(".txt") or file.endswith(".py"):
|
12 |
-
# Open the file in place for editing
|
13 |
-
with fileinput.FileInput(file_path, inplace=True) as f:
|
14 |
-
for line in f:
|
15 |
-
# Replace the old string with the new string
|
16 |
-
print(line.replace(old_str, new_str), end='')
|
17 |
-
|
18 |
-
|
19 |
-
def use_pydantic_v1():
|
20 |
-
module_file_path = pydantic.__file__
|
21 |
-
module_file_path = module_file_path.split('pydantic')[0] + 'haystack'
|
22 |
-
with open(module_file_path+'/schema.py','r') as f:
|
23 |
-
haystack_schema_file = f.read()
|
24 |
-
|
25 |
-
if 'from pydantic.v1' not in haystack_schema_file:
|
26 |
-
replace_string_in_files(module_file_path, 'from pydantic', 'from pydantic.v1')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
NLP_QA_Tool/utils/config.py
DELETED
@@ -1,43 +0,0 @@
|
|
1 |
-
import argparse
|
2 |
-
import os
|
3 |
-
import os
|
4 |
-
from dotenv import load_dotenv
|
5 |
-
|
6 |
-
load_dotenv()
|
7 |
-
parser = argparse.ArgumentParser(description='This app lists animals')
|
8 |
-
|
9 |
-
document_store_choices = ('inmemory', 'weaviate', 'milvus', 'opensearch')
|
10 |
-
parser.add_argument('--store', choices=document_store_choices, default='inmemory', help='DocumentStore selection (default: %(default)s)')
|
11 |
-
parser.add_argument('--name', default="Document Insights: Extractive & Generative Methods")
|
12 |
-
|
13 |
-
model_configs = {
|
14 |
-
'EMBEDDING_MODEL': os.getenv("EMBEDDING_MODEL", "sentence-transformers/all-MiniLM-L12-v2"),
|
15 |
-
'GENERATIVE_MODEL': os.getenv("GENERATIVE_MODEL", "gpt-4"),
|
16 |
-
#'EXTRACTIVE_MODEL': os.getenv("EXTRACTIVE_MODEL", "deepset/roberta-base-squad2"),
|
17 |
-
'EXTRACTIVE_MODEL': os.getenv("EXTRACTIVE_MODEL", "deepset/gelectra-large-germanquad"),
|
18 |
-
#'EXTRACTIVE_MODEL': os.getenv("EXTRACTIVE_MODEL", "MachineLearningReply/bert-base-german-legal-qa"),
|
19 |
-
'OPENAI_KEY': os.getenv("OPENAI_KEY"),
|
20 |
-
'COHERE_KEY': os.getenv("COHERE_KEY"),
|
21 |
-
}
|
22 |
-
|
23 |
-
document_store_configs = {
|
24 |
-
# Weaviate Config
|
25 |
-
'WEAVIATE_HOST': os.getenv("WEAVIATE_HOST", "http://localhost"),
|
26 |
-
'WEAVIATE_PORT': os.getenv("WEAVIATE_PORT", 8080),
|
27 |
-
'WEAVIATE_INDEX': os.getenv("WEAVIATE_INDEX", "Document"),
|
28 |
-
'WEAVIATE_EMBEDDING_DIM': os.getenv("WEAVIATE_EMBEDDING_DIM", 768),
|
29 |
-
|
30 |
-
# OpenSearch Config
|
31 |
-
'OPENSEARCH_SCHEME': os.getenv("OPENSEARCH_SCHEME", "https"),
|
32 |
-
'OPENSEARCH_USERNAME': os.getenv("OPENSEARCH_USERNAME", "admin"),
|
33 |
-
'OPENSEARCH_PASSWORD': os.getenv("OPENSEARCH_PASSWORD", "admin"),
|
34 |
-
'OPENSEARCH_HOST': os.getenv("OPENSEARCH_HOST", "localhost"),
|
35 |
-
'OPENSEARCH_PORT': os.getenv("OPENSEARCH_PORT", 9200),
|
36 |
-
'OPENSEARCH_INDEX': os.getenv("OPENSEARCH_INDEX", "document"),
|
37 |
-
'OPENSEARCH_EMBEDDING_DIM': os.getenv("OPENSEARCH_EMBEDDING_DIM", 768),
|
38 |
-
|
39 |
-
# Milvus Config
|
40 |
-
'MILVUS_URI': os.getenv("MILVUS_URI", "http://localhost:19530/default"),
|
41 |
-
'MILVUS_INDEX': os.getenv("MILVUS_INDEX", "document"),
|
42 |
-
'MILVUS_EMBEDDING_DIM': os.getenv("MILVUS_EMBEDDING_DIM", 768),
|
43 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
NLP_QA_Tool/utils/haystack.py
DELETED
@@ -1,124 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
|
3 |
-
from utils.config import document_store_configs, model_configs
|
4 |
-
from haystack import Pipeline
|
5 |
-
from haystack.schema import Answer
|
6 |
-
from haystack.document_stores import BaseDocumentStore
|
7 |
-
from haystack.document_stores import InMemoryDocumentStore, OpenSearchDocumentStore, WeaviateDocumentStore
|
8 |
-
from haystack.nodes import EmbeddingRetriever, FARMReader, PromptNode, PreProcessor
|
9 |
-
#from haystack.nodes import TextConverter, FileTypeClassifier, PDFToTextConverter
|
10 |
-
from milvus_haystack import MilvusDocumentStore
|
11 |
-
#Use this file to set up your Haystack pipeline and querying
|
12 |
-
|
13 |
-
@st.cache_resource(show_spinner=False)
|
14 |
-
def start_preprocessor_node():
|
15 |
-
print('initializing preprocessor node')
|
16 |
-
processor = PreProcessor(
|
17 |
-
clean_empty_lines= True,
|
18 |
-
clean_whitespace=True,
|
19 |
-
clean_header_footer=True,
|
20 |
-
#remove_substrings=None,
|
21 |
-
split_by="word",
|
22 |
-
split_length=100,
|
23 |
-
split_respect_sentence_boundary=True,
|
24 |
-
#split_overlap=0,
|
25 |
-
#max_chars_check= 10_000
|
26 |
-
)
|
27 |
-
return processor
|
28 |
-
#return docs
|
29 |
-
|
30 |
-
@st.cache_resource(show_spinner=False)
|
31 |
-
def start_document_store(type: str):
|
32 |
-
#This function starts the documents store of your choice based on your command line preference
|
33 |
-
print('initializing document store')
|
34 |
-
if type == 'inmemory':
|
35 |
-
document_store = InMemoryDocumentStore(use_bm25=True, embedding_dim=384)
|
36 |
-
'''
|
37 |
-
documents = [
|
38 |
-
{
|
39 |
-
'content': "Pi is a super dog",
|
40 |
-
'meta': {'name': "pi.txt"}
|
41 |
-
},
|
42 |
-
{
|
43 |
-
'content': "The revenue of siemens is 5 milion Euro",
|
44 |
-
'meta': {'name': "siemens.txt"}
|
45 |
-
},
|
46 |
-
]
|
47 |
-
document_store.write_documents(documents)
|
48 |
-
'''
|
49 |
-
elif type == 'opensearch':
|
50 |
-
document_store = OpenSearchDocumentStore(scheme = document_store_configs['OPENSEARCH_SCHEME'],
|
51 |
-
username = document_store_configs['OPENSEARCH_USERNAME'],
|
52 |
-
password = document_store_configs['OPENSEARCH_PASSWORD'],
|
53 |
-
host = document_store_configs['OPENSEARCH_HOST'],
|
54 |
-
port = document_store_configs['OPENSEARCH_PORT'],
|
55 |
-
index = document_store_configs['OPENSEARCH_INDEX'],
|
56 |
-
embedding_dim = document_store_configs['OPENSEARCH_EMBEDDING_DIM'])
|
57 |
-
elif type == 'weaviate':
|
58 |
-
document_store = WeaviateDocumentStore(host = document_store_configs['WEAVIATE_HOST'],
|
59 |
-
port = document_store_configs['WEAVIATE_PORT'],
|
60 |
-
index = document_store_configs['WEAVIATE_INDEX'],
|
61 |
-
embedding_dim = document_store_configs['WEAVIATE_EMBEDDING_DIM'])
|
62 |
-
elif type == 'milvus':
|
63 |
-
document_store = MilvusDocumentStore(uri = document_store_configs['MILVUS_URI'],
|
64 |
-
index = document_store_configs['MILVUS_INDEX'],
|
65 |
-
embedding_dim = document_store_configs['MILVUS_EMBEDDING_DIM'],
|
66 |
-
return_embedding=True)
|
67 |
-
return document_store
|
68 |
-
|
69 |
-
# cached to make index and models load only at start
|
70 |
-
@st.cache_resource(show_spinner=False)
|
71 |
-
def start_retriever(_document_store: BaseDocumentStore):
|
72 |
-
print('initializing retriever')
|
73 |
-
retriever = EmbeddingRetriever(document_store=_document_store,
|
74 |
-
embedding_model=model_configs['EMBEDDING_MODEL'],
|
75 |
-
top_k=5)
|
76 |
-
#
|
77 |
-
|
78 |
-
#_document_store.update_embeddings(retriever)
|
79 |
-
return retriever
|
80 |
-
|
81 |
-
|
82 |
-
@st.cache_resource(show_spinner=False)
|
83 |
-
def start_reader():
|
84 |
-
print('initializing reader')
|
85 |
-
reader = FARMReader(model_name_or_path=model_configs['EXTRACTIVE_MODEL'])
|
86 |
-
return reader
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
# cached to make index and models load only at start
|
91 |
-
@st.cache_resource(show_spinner=False)
|
92 |
-
def start_haystack_extractive(_document_store: BaseDocumentStore, _retriever: EmbeddingRetriever, _reader: FARMReader):
|
93 |
-
print('initializing pipeline')
|
94 |
-
pipe = Pipeline()
|
95 |
-
pipe.add_node(component=_retriever, name="Retriever", inputs=["Query"])
|
96 |
-
pipe.add_node(component= _reader, name="Reader", inputs=["Retriever"])
|
97 |
-
return pipe
|
98 |
-
|
99 |
-
@st.cache_resource(show_spinner=False)
|
100 |
-
def start_haystack_rag(_document_store: BaseDocumentStore, _retriever: EmbeddingRetriever, openai_key):
|
101 |
-
prompt_node = PromptNode(default_prompt_template="deepset/question-answering",
|
102 |
-
model_name_or_path=model_configs['GENERATIVE_MODEL'],
|
103 |
-
api_key=openai_key,
|
104 |
-
max_length=500)
|
105 |
-
pipe = Pipeline()
|
106 |
-
|
107 |
-
pipe.add_node(component=_retriever, name="Retriever", inputs=["Query"])
|
108 |
-
pipe.add_node(component=prompt_node, name="PromptNode", inputs=["Retriever"])
|
109 |
-
|
110 |
-
return pipe
|
111 |
-
|
112 |
-
#@st.cache_data(show_spinner=True)
|
113 |
-
def query(_pipeline, question):
|
114 |
-
params = {}
|
115 |
-
results = _pipeline.run(question, params=params)
|
116 |
-
return results
|
117 |
-
|
118 |
-
def initialize_pipeline(task, document_store, retriever, reader, openai_key = ""):
|
119 |
-
if task == 'extractive':
|
120 |
-
return start_haystack_extractive(document_store, retriever, reader)
|
121 |
-
elif task == 'rag':
|
122 |
-
return start_haystack_rag(document_store, retriever, openai_key)
|
123 |
-
|
124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
NLP_QA_Tool/utils/ui.py
DELETED
@@ -1,16 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
|
3 |
-
def set_state_if_absent(key, value):
|
4 |
-
if key not in st.session_state:
|
5 |
-
st.session_state[key] = value
|
6 |
-
|
7 |
-
def set_initial_state():
|
8 |
-
set_state_if_absent("question", "Ask something here?")
|
9 |
-
set_state_if_absent("results_extractive", None)
|
10 |
-
set_state_if_absent("results_generative", None)
|
11 |
-
set_state_if_absent("task", None)
|
12 |
-
|
13 |
-
def reset_results(*args):
|
14 |
-
st.session_state.results_extractive = None
|
15 |
-
st.session_state.results_generative = None
|
16 |
-
st.session_state.task = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|