hkoppen commited on
Commit
d84e800
·
verified ·
1 Parent(s): 7ca3dfa

Delete NLP_QA_Tool

Browse files
NLP_QA_Tool/.DS_Store DELETED
Binary file (10.2 kB)
 
NLP_QA_Tool/.github/workflows/main.yml DELETED
@@ -1,19 +0,0 @@
1
- name: Sync to Hugging Face hub
2
- on:
3
- push:
4
- branches: [puma_demo]
5
- # to run this workflow manually from the Actions tab
6
- workflow_dispatch:
7
-
8
- jobs:
9
- sync-to-hub:
10
- runs-on: ubuntu-latest
11
- steps:
12
- - uses: actions/checkout@v3
13
- with:
14
- fetch-depth: 0
15
- lfs: true
16
- - name: Push to hub
17
- env:
18
- HF_TOKEN: ${{ secrets.HF_TOKEN }}
19
- run: git push https://hkoppen:[email protected]/spaces/MachineLearningReply/q-and-a-tool-custom-logo puma_demo
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
NLP_QA_Tool/.gitignore DELETED
@@ -1,47 +0,0 @@
1
- # See https://help.github.com/articles/ignoring-files/ for more about ignoring files.
2
-
3
- # dependencies
4
- node_modules
5
- .pnp
6
- .pnp.js
7
-
8
- # testing
9
- coverage
10
-
11
- # next.js
12
- .next/
13
- out/
14
- build
15
-
16
- # misc
17
- .DS_Store
18
- *.pem
19
-
20
- # debug
21
- npm-debug.log*
22
- yarn-debug.log*
23
- yarn-error.log*
24
- .pnpm-debug.log*
25
-
26
- # local env files
27
- .env.local
28
- .env.development.local
29
- .env.test.local
30
- .env.production.local
31
-
32
- # turbo
33
- .turbo
34
-
35
- .contentlayer
36
- .env
37
- .vercel
38
- .vscode
39
-
40
- # JetBrains
41
- .idea
42
-
43
- # VSCode
44
- __pycache__/*
45
-
46
- # datasets directory is used for local development
47
- /datasets/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
NLP_QA_Tool/.streamlit/config.toml DELETED
@@ -1,6 +0,0 @@
1
- [theme]
2
- primaryColor = "#E694FF"
3
- backgroundColor = "#FFFFFF"
4
- secondaryBackgroundColor = "#F0F0F0"
5
- textColor = "#262730"
6
- font = "sans serif"
 
 
 
 
 
 
 
NLP_QA_Tool/.vscode/settings.json DELETED
@@ -1,11 +0,0 @@
1
- {
2
- "python.languageServer": "Pylance",
3
- "python.analysis.typeCheckingMode": "basic",
4
- "typescript.tsserver.maxTsServerMemory": 3072,
5
- "typescript.tsserver.watchOptions": {
6
- "watchFile": "dynamicPriorityPolling"
7
- },
8
- "javascript.suggest.includeAutomaticOptionalChainCompletions": false,
9
- "debug.saveBeforeStart": "none",
10
- "c3.welcome.showFeatureHighlight": false
11
- }
 
 
 
 
 
 
 
 
 
 
 
 
NLP_QA_Tool/Dockerfile DELETED
@@ -1,29 +0,0 @@
1
- FROM python:3.10-slim
2
-
3
- WORKDIR /app
4
-
5
- RUN apt-get update && apt-get install -y \
6
- build-essential \
7
- curl \
8
- software-properties-common \
9
- git \
10
- && rm -rf /var/lib/apt/lists/*
11
-
12
- COPY requirements.txt .
13
-
14
- RUN pip3 install -r requirements.txt
15
-
16
- COPY . .
17
-
18
- # extract version
19
- COPY .git ./.git
20
- RUN git rev-parse --short HEAD > revision.txt
21
- RUN rm -rf ./.git
22
-
23
- EXPOSE 8501
24
-
25
- HEALTHCHECK CMD curl --fail http://localhost:8501/_stcore/health
26
-
27
- ENV PYTHONPATH "${PYTHONPATH}:."
28
-
29
- ENTRYPOINT ["streamlit", "run", "app.py", "--server.port=8501", "--server.address=0.0.0.0"]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
NLP_QA_Tool/README.md DELETED
@@ -1,108 +0,0 @@
1
- ---
2
- title: NLP Q&A Tool
3
- emoji: 👑
4
- colorFrom: indigo
5
- colorTo: indigo
6
- sdk: streamlit
7
- sdk_version: 1.32.2
8
- app_file: app.py
9
- pinned: false
10
- ---
11
-
12
- # Document Insights - Extractive & Generative Methods using Haystack
13
-
14
- This template [Streamlit](https://docs.streamlit.io/) app set up for
15
- simple [Haystack search applications](https://docs.haystack.deepset.ai/docs/semantic_search). The template is ready to
16
- do QA with **Retrievel Augmented Generation**, or **Ectractive QA**
17
-
18
- Below you will also find instructions on how you
19
- could [push this to Hugging Face Spaces 🤗](#pushing-to-hugging-face-spaces-).
20
-
21
- ## Installation and Running
22
-
23
- ### Local development
24
-
25
- To run the bare application which does _nothing_:
26
-
27
- 1. Install requirements: `pip install -r requirements.txt`
28
- 2. Run the streamlit app: `streamlit run app.py`
29
-
30
- This will start up the app on `localhost:8501` where you will find a simple search bar. Before you start editing, you'll
31
- notice that the app will only show you instructions on what to edit.
32
-
33
- ### Docker
34
-
35
- To run the app in a Docker container:
36
-
37
- 1. Build the Docker image: `docker build -t haystack-streamlit .`
38
- 2. Run the Docker container: `docker run -p 8501:8501 haystack-streamlit` (make sure to bind any other ports you need)
39
- 3. Open your browser and go to `http://localhost:8501`
40
-
41
- ### Repo structure
42
-
43
- - `./utils`: This is where we have 3 files:
44
- - `config.py`: This file extracts all of the configuration settings from a `.env` file. For some config settings, it
45
- uses default values. An example of this is
46
- in [this demo project](https://github.com/TuanaCelik/should-i-follow/blob/main/utils/config.py).
47
- - `haystack.py`: Here you will find some functions already set up for you to start creating your Haystack search
48
- pipeline. It includes 2 main functions called `start_haystack()` which is what we use to create a pipeline and
49
- cache it, and `query()` which is the function called by `app.py` once a user query is received.
50
- - `ui.py`: Use this file for any UI and initial value setups.
51
- - `app.py`: This is the main Streamlit application file that we will run. In its current state it has a simple search
52
- bar, a 'Run' button, and a response that you can highlight answers with.
53
- - `requirements.txt`: This file includes the required libraries to run the Streamlit app.
54
- - `document_qa_engine.py`: This file includes the QA pipeline with Haystack.
55
-
56
- ### What to edit?
57
-
58
- There are default pipelines both in `start_haystack_extractive()` and `start_haystack_rag()`
59
-
60
- - Change the pipelines to use the embedding models, extractive or generative models as you need.
61
- - If using the `rag` task, change the `default_prompt_template` to use one of our available ones
62
- on [PromptHub](https://prompthub.deepset.ai) or create your own `PromptTemplate`
63
-
64
- ### Using local LLM models
65
-
66
- To use the `local LLM` mode you can use [LM Studio](https://lmstudio.ai/) or [Ollama](https://ollama.com/).
67
- For more info on how to run the app with a local LLM model please refer to the documentation of the tool you are using.
68
- The `local_llm` mode expects an API available at `http://localhost:1234/v1`.
69
-
70
- ## Pushing to Hugging Face Spaces 🤗
71
-
72
- Below is an example GitHub action that will let you push your Streamlit app straight to the Hugging Face Hub as a Space.
73
-
74
- A few things to pay attention to:
75
-
76
- 1. Create a New Space on Hugging Face with the Streamlit SDK.
77
- 2. Create a Hugging Face token on your HF account.
78
- 3. Create a secret on your GitHub repo called `HF_TOKEN` and put your Hugging Face token here.
79
- 4. If you're using DocumentStores or APIs that require some keys/tokens, make sure these are provided as a secret for
80
- your HF Space too!
81
- 5. This readme is set up to tell HF spaces that it's using streamlit and that the app is running on `app.py`, make any
82
- changes to the frontmatter of this readme to display the title, emoji etc you desire.
83
- 6. Create a file in `.github/workflows/hf_sync.yml`. Here's an example that you can change with your own information,
84
- and an [example workflow](https://github.com/TuanaCelik/should-i-follow/blob/main/.github/workflows/hf_sync.yml)
85
- working for the [Should I Follow demo](https://huggingface.co/spaces/deepset/should-i-follow)
86
-
87
- ```yaml
88
- name: Sync to Hugging Face hub
89
- on:
90
- push:
91
- branches: [ main ]
92
-
93
- # to run this workflow manually from the Actions tab
94
- workflow_dispatch:
95
-
96
- jobs:
97
- sync-to-hub:
98
- runs-on: ubuntu-latest
99
- steps:
100
- - uses: actions/checkout@v2
101
- with:
102
- fetch-depth: 0
103
- lfs: true
104
- - name: Push to hub
105
- env:
106
- HF_TOKEN: ${{ secrets.HF_TOKEN }}
107
- run: git push --force https://{YOUR_HF_USERNAME}:$HF_TOKEN@{YOUR_HF_SPACE_REPO} main
108
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
NLP_QA_Tool/__pycache__/document_qa_engine.cpython-310.pyc DELETED
Binary file (5.11 kB)
 
NLP_QA_Tool/__pycache__/utils.cpython-310.pyc DELETED
Binary file (2.61 kB)
 
NLP_QA_Tool/app.py DELETED
@@ -1,241 +0,0 @@
1
- from dotenv import load_dotenv
2
- import pandas as pd
3
- import streamlit as st
4
- import streamlit_authenticator as stauth
5
- from streamlit_modal import Modal
6
-
7
- from utils import new_file, clear_memory, append_documentation_to_sidebar, load_authenticator_config, init_qa, \
8
- append_header
9
- from haystack.document_stores.in_memory import InMemoryDocumentStore
10
- from haystack import Document
11
-
12
- load_dotenv()
13
-
14
- OPENAI_MODELS = ['gpt-3.5-turbo',
15
- "gpt-4",
16
- "gpt-4-1106-preview"]
17
-
18
- OPEN_MODELS = [
19
- 'mistralai/Mistral-7B-Instruct-v0.1',
20
- 'HuggingFaceH4/zephyr-7b-beta'
21
- ]
22
-
23
-
24
- def reset_chat_memory():
25
- st.button(
26
- 'Reset chat memory',
27
- key="reset-memory-button",
28
- on_click=clear_memory,
29
- help="Clear the conversational memory. Currently implemented to retain the 4 most recent messages.",
30
- disabled=False)
31
-
32
-
33
- def manage_files(modal, document_store):
34
- open_modal = st.sidebar.button("Manage Files", use_container_width=True)
35
- if open_modal:
36
- modal.open()
37
-
38
- if modal.is_open():
39
- with modal.container():
40
- uploaded_file = st.file_uploader(
41
- "Upload a CV in PDF format",
42
- type=("pdf",),
43
- on_change=new_file(),
44
- disabled=st.session_state['document_qa_model'] is None,
45
- label_visibility="collapsed",
46
- help="The document is used to answer your questions. The system will process the document and store it in a RAG to answer your questions.",
47
- )
48
- edited_df = st.data_editor(use_container_width=True, data=st.session_state['files'],
49
- num_rows='dynamic',
50
- column_order=['name', 'size', 'is_active'],
51
- column_config={'name': {'editable': False}, 'size': {'editable': False},
52
- 'is_active': {'editable': True, 'type': 'checkbox',
53
- 'width': 100}}
54
- )
55
- st.session_state['files'] = pd.DataFrame(columns=['name', 'content', 'size', 'is_active'])
56
-
57
- if uploaded_file:
58
- st.session_state['file_uploaded'] = True
59
- st.session_state['files'] = pd.concat([st.session_state['files'], edited_df])
60
- with st.spinner('Processing the CV content...'):
61
- store_file_in_table(document_store, uploaded_file)
62
- ingest_document(uploaded_file)
63
-
64
-
65
- def ingest_document(uploaded_file):
66
- if not st.session_state['document_qa_model']:
67
- st.warning('Please select a model to start asking questions')
68
- else:
69
- try:
70
- st.session_state['document_qa_model'].ingest_pdf(uploaded_file)
71
- st.success('Document processed successfully')
72
- except Exception as e:
73
- st.error(f"Error processing the document: {e}")
74
- st.session_state['file_uploaded'] = False
75
-
76
-
77
- def store_file_in_table(document_store, uploaded_file):
78
- pdf_content = uploaded_file.getvalue()
79
- st.session_state['pdf_content'] = pdf_content
80
- st.session_state.messages = []
81
- document = Document(content=pdf_content, meta={"name": uploaded_file.name})
82
- df = pd.DataFrame(st.session_state['files'])
83
- df['is_active'] = False
84
- st.session_state['files'] = pd.concat([df, pd.DataFrame(
85
- [{"name": uploaded_file.name, "content": pdf_content, "size": len(pdf_content),
86
- "is_active": True}])])
87
- document_store.write_documents([document])
88
-
89
-
90
- def init_session_state():
91
- st.session_state.setdefault('files', pd.DataFrame(columns=['name', 'content', 'size', 'is_active']))
92
- st.session_state.setdefault('models', [])
93
- st.session_state.setdefault('api_keys', {})
94
- st.session_state.setdefault('current_selected_model', 'gpt-3.5-turbo')
95
- st.session_state.setdefault('current_api_key', '')
96
- st.session_state.setdefault('messages', [])
97
- st.session_state.setdefault('pdf_content', None)
98
- st.session_state.setdefault('memory', None)
99
- st.session_state.setdefault('pdf', None)
100
- st.session_state.setdefault('document_qa_model', None)
101
- st.session_state.setdefault('file_uploaded', False)
102
-
103
-
104
- def set_page_config():
105
- st.set_page_config(
106
- page_title="CV Insights AI Assistant",
107
- page_icon=":shark:",
108
- initial_sidebar_state="expanded",
109
- layout="wide",
110
- menu_items={
111
- 'Get Help': 'https://www.extremelycoolapp.com/help',
112
- 'Report a bug': "https://www.extremelycoolapp.com/bug",
113
- 'About': "# This is a header. This is an *extremely* cool app!"
114
- }
115
- )
116
-
117
-
118
- def update_running_model(api_key, model):
119
- st.session_state['api_keys'][model] = api_key
120
- st.session_state['document_qa_model'] = init_qa(model, api_key)
121
-
122
-
123
- def init_api_key_dict():
124
- st.session_state['models'] = OPENAI_MODELS + list(OPEN_MODELS) + ['local LLM']
125
- for model_name in OPENAI_MODELS:
126
- st.session_state['api_keys'][model_name] = None
127
-
128
-
129
- def display_chat_messages(chat_box, chat_input):
130
- with chat_box:
131
- if chat_input:
132
- for message in st.session_state.messages:
133
- with st.chat_message(message["role"]):
134
- st.markdown(message["content"], unsafe_allow_html=True)
135
-
136
- st.chat_message("user").markdown(chat_input)
137
- with st.chat_message("assistant"):
138
- # process user input and generate response
139
- response = st.session_state['document_qa_model'].inference(chat_input, st.session_state.messages)
140
-
141
- st.markdown(response)
142
- st.session_state.messages.append({"role": "user", "content": chat_input})
143
- st.session_state.messages.append({"role": "assistant", "content": response})
144
-
145
-
146
- def setup_model_selection():
147
- model = st.selectbox(
148
- "Model:",
149
- options=st.session_state['models'],
150
- index=0, # default to the first model in the list gpt-3.5-turbo
151
- placeholder="Select model",
152
- help="Select an LLM:"
153
- )
154
-
155
- if model:
156
- if model != st.session_state['current_selected_model']:
157
- st.session_state['current_selected_model'] = model
158
- if model == 'local LLM':
159
- st.session_state['document_qa_model'] = init_qa(model)
160
-
161
- api_key = st.sidebar.text_input("Enter LLM-authorization Key:", type="password",
162
- disabled=st.session_state['current_selected_model'] == 'local LLM')
163
- if api_key and api_key != st.session_state['current_api_key']:
164
- update_running_model(api_key, model)
165
- st.session_state['current_api_key'] = api_key
166
-
167
- return model
168
-
169
-
170
- def setup_task_selection(model):
171
- # enable extractive and generative tasks if we're using a local LLM or an OpenAI model with an API key
172
- if model == 'local LLM' or st.session_state['api_keys'].get(model):
173
- task_options = ['Extractive', 'Generative']
174
- else:
175
- task_options = ['Extractive']
176
-
177
- task_selection = st.sidebar.radio('Select the task:', task_options)
178
-
179
- # TODO: Add the task selection logic here (initializing the model based on the task)
180
-
181
-
182
- def setup_page_body():
183
- chat_box = st.container(height=350, border=False)
184
- chat_input = st.chat_input(
185
- placeholder="Upload a document to start asking questions...",
186
- disabled=not st.session_state['file_uploaded'],
187
- )
188
- if st.session_state['file_uploaded']:
189
- display_chat_messages(chat_box, chat_input)
190
-
191
-
192
- class StreamlitApp:
193
- def __init__(self):
194
- self.authenticator_config = load_authenticator_config()
195
- self.document_store = InMemoryDocumentStore()
196
- set_page_config()
197
- self.authenticator = self.init_authenticator()
198
- init_session_state()
199
- init_api_key_dict()
200
-
201
- def init_authenticator(self):
202
- return stauth.Authenticate(
203
- self.authenticator_config['credentials'],
204
- self.authenticator_config['cookie']['name'],
205
- self.authenticator_config['cookie']['key'],
206
- self.authenticator_config['cookie']['expiry_days']
207
- )
208
-
209
- def setup_sidebar(self):
210
- with st.sidebar:
211
- st.sidebar.image("resources/puma.png", use_column_width=True)
212
-
213
- # Sidebar for Task Selection
214
- st.sidebar.header('Options:')
215
- model = setup_model_selection()
216
- setup_task_selection(model)
217
- st.divider()
218
- self.authenticator.logout()
219
- reset_chat_memory()
220
- modal = Modal("Manage Files", key="demo-modal")
221
- manage_files(modal, self.document_store)
222
- st.divider()
223
- append_documentation_to_sidebar()
224
-
225
- def run(self):
226
- name, authentication_status, username = self.authenticator.login()
227
- if authentication_status:
228
- self.run_authenticated_app()
229
- elif st.session_state["authentication_status"] is False:
230
- st.error('Username/password is incorrect')
231
- elif st.session_state["authentication_status"] is None:
232
- st.warning('Please enter your username and password')
233
-
234
- def run_authenticated_app(self):
235
- self.setup_sidebar()
236
- append_header()
237
- setup_page_body()
238
-
239
-
240
- app = StreamlitApp()
241
- app.run()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
NLP_QA_Tool/authenticator_config.yaml DELETED
@@ -1,15 +0,0 @@
1
- credentials:
2
- usernames:
3
- mlreply:
4
5
- failed_login_attempts: 0 # Will be managed automatically
6
- logged_in: False # Will be managed automatically
7
- name: ML Reply
8
- password: mlreply # Will be hashed automatically
9
- cookie:
10
- expiry_days: 1
11
- key: some_signature_key # Must be string
12
- name: some_cookie_name
13
- #pre-authorized:
14
- # emails:
15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
NLP_QA_Tool/document_qa_engine.py DELETED
@@ -1,141 +0,0 @@
1
- from typing import List
2
-
3
- from haystack.dataclasses import ChatMessage
4
- from pypdf import PdfReader
5
- from haystack.utils import Secret
6
- from haystack import Pipeline, Document, component
7
-
8
- from haystack.components.preprocessors import DocumentCleaner, DocumentSplitter
9
- from haystack.components.writers import DocumentWriter
10
- from haystack.components.embedders import SentenceTransformersDocumentEmbedder, SentenceTransformersTextEmbedder
11
- from haystack.document_stores.in_memory import InMemoryDocumentStore
12
- from haystack.components.retrievers.in_memory import InMemoryEmbeddingRetriever
13
- from haystack.components.builders import DynamicChatPromptBuilder
14
- from haystack.components.generators.chat import OpenAIChatGenerator, HuggingFaceTGIChatGenerator
15
- from haystack.document_stores.types import DuplicatePolicy
16
-
17
- SENTENCE_RETREIVER_MODEL = "sentence-transformers/all-MiniLM-L6-v2"
18
-
19
- MAX_TOKENS = 500
20
-
21
- template = """
22
- As a professional HR recruiter given the following information, answer the question shortly and concisely in 1 or 2 sentences.
23
-
24
- Context:
25
- {% for document in documents %}
26
- {{ document.content }}
27
- {% endfor %}
28
-
29
- Question: {{question}}
30
- Answer:
31
- """
32
-
33
-
34
- @component
35
- class UploadedFileConverter:
36
- """
37
- A component to convert uploaded PDF files to Documents
38
- """
39
-
40
- @component.output_types(documents=List[Document])
41
- def run(self, uploaded_file):
42
- pdf = PdfReader(uploaded_file)
43
- documents = []
44
- # uploaded file name without .pdf at the end and with _ and page number at the end
45
- name = uploaded_file.name.rstrip('.PDF') + '_'
46
- for page in pdf.pages:
47
- documents.append(
48
- Document(
49
- content=page.extract_text(),
50
- meta={'name': name + f"_{page.page_number}"}))
51
- return {"documents": documents}
52
-
53
-
54
- def create_ingestion_pipeline(document_store):
55
- doc_embedder = SentenceTransformersDocumentEmbedder(model=SENTENCE_RETREIVER_MODEL)
56
- doc_embedder.warm_up()
57
-
58
- pipeline = Pipeline()
59
- pipeline.add_component("converter", UploadedFileConverter())
60
- pipeline.add_component("cleaner", DocumentCleaner())
61
- pipeline.add_component("splitter",
62
- DocumentSplitter(split_by="passage", split_length=100, split_overlap=10))
63
- pipeline.add_component("embedder", doc_embedder)
64
- pipeline.add_component("writer",
65
- DocumentWriter(document_store=document_store, policy=DuplicatePolicy.OVERWRITE))
66
-
67
- pipeline.connect("converter", "cleaner")
68
- pipeline.connect("cleaner", "splitter")
69
- pipeline.connect("splitter", "embedder")
70
- pipeline.connect("embedder", "writer")
71
- return pipeline
72
-
73
-
74
- def create_inference_pipeline(document_store, model_name, api_key):
75
- if model_name == "local LLM":
76
- generator = OpenAIChatGenerator(api_key=Secret.from_token("<local LLM doesn't need an API key>"),
77
- model=model_name,
78
- api_base_url="http://localhost:1234/v1",
79
- generation_kwargs={"max_tokens": MAX_TOKENS}
80
- )
81
- elif "gpt" in model_name:
82
- generator = OpenAIChatGenerator(api_key=Secret.from_token(api_key), model=model_name,
83
- generation_kwargs={"max_tokens": MAX_TOKENS, "stream": False}
84
- )
85
- else:
86
- generator = HuggingFaceTGIChatGenerator(token=Secret.from_token(api_key), model=model_name,
87
- generation_kwargs={"max_new_tokens": MAX_TOKENS}
88
- )
89
- pipeline = Pipeline()
90
- pipeline.add_component("text_embedder",
91
- SentenceTransformersTextEmbedder(model=SENTENCE_RETREIVER_MODEL))
92
- pipeline.add_component("retriever", InMemoryEmbeddingRetriever(document_store, top_k=3))
93
- pipeline.add_component("prompt_builder",
94
- DynamicChatPromptBuilder(runtime_variables=["query", "documents"]))
95
- pipeline.add_component("llm", generator)
96
- pipeline.connect("text_embedder.embedding", "retriever.query_embedding")
97
- pipeline.connect("retriever.documents", "prompt_builder.documents")
98
- pipeline.connect("prompt_builder.prompt", "llm.messages")
99
-
100
- return pipeline
101
-
102
-
103
- class DocumentQAEngine:
104
- def __init__(self,
105
- model_name,
106
- api_key=None
107
- ):
108
- self.api_key = api_key
109
- self.model_name = model_name
110
- document_store = InMemoryDocumentStore()
111
- self.chunks = []
112
- self.inference_pipeline = create_inference_pipeline(document_store, model_name, api_key)
113
- self.pdf_ingestion_pipeline = create_ingestion_pipeline(document_store)
114
-
115
- def ingest_pdf(self, uploaded_file):
116
- self.pdf_ingestion_pipeline.run({"converter": {"uploaded_file": uploaded_file}})
117
-
118
- def inference(self, query, input_messages: List[dict]):
119
- system_message = ChatMessage.from_system(
120
- "You are a professional HR recruiter that answers questions based on the content of the uploaded CV. in 1 or 2 sentences.")
121
- messages = [system_message]
122
- for message in input_messages:
123
- if message["role"] == "user":
124
- messages.append(ChatMessage.from_system(message["content"]))
125
- else:
126
- messages.append(
127
- ChatMessage.from_user(message["content"]))
128
- messages.append(ChatMessage.from_user("""
129
- Relevant information from the uploaded CV:
130
- {% for doc in documents %}
131
- {{ doc.content }}
132
- {% endfor %}
133
-
134
- \nQuestion: {{query}}
135
- \nAnswer:
136
- """))
137
- res = self.inference_pipeline.run(data={"text_embedder": {"text": query},
138
- "prompt_builder": {"prompt_source": messages,
139
- "query": query
140
- }})
141
- return res["llm"]["replies"][0].content
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
NLP_QA_Tool/requirements.txt DELETED
@@ -1,18 +0,0 @@
1
- # Streamlit
2
- streamlit~=1.32.2
3
- streamlit-modal==0.1.2
4
- streamlit-authenticator==0.3.2
5
- streamlit-pdf-viewer==0.0.9
6
-
7
- # LLM
8
- haystack-ai~=2.0.0
9
- sentence_transformers~=2.6.0
10
-
11
- # Utils
12
- pandas~=2.2.1
13
- pypdf~=4.2.0
14
- pytest~=8.1.1
15
- python-dotenv~=1.0.1
16
-
17
- # Dev Utils
18
- watchdog
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
NLP_QA_Tool/resources/ml_logo.png DELETED
Binary file (28.7 kB)
 
NLP_QA_Tool/resources/puma.png DELETED
Binary file (18 kB)
 
NLP_QA_Tool/utils.py DELETED
@@ -1,56 +0,0 @@
1
- from document_qa_engine import DocumentQAEngine
2
-
3
- import streamlit as st
4
-
5
- import logging
6
- from yaml import load, SafeLoader, YAMLError
7
-
8
-
9
- def load_authenticator_config(file_path='authenticator_config.yaml'):
10
- try:
11
- with open(file_path, 'r') as file:
12
- authenticator_config = load(file, Loader=SafeLoader)
13
- return authenticator_config
14
- except FileNotFoundError:
15
- logging.error(f"File {file_path} not found.")
16
- except YAMLError as error:
17
- logging.error(f"Error parsing YAML file: {error}")
18
-
19
-
20
- def new_file():
21
- st.session_state['loaded_embeddings'] = None
22
- st.session_state['doc_id'] = None
23
- st.session_state['uploaded'] = True
24
- clear_memory()
25
-
26
-
27
- def clear_memory():
28
- if st.session_state['memory']:
29
- st.session_state['memory'].clear()
30
-
31
-
32
- def init_qa(model, api_key=None):
33
- print(f"Initializing QA with model: {model} and API key: {api_key}")
34
- return DocumentQAEngine(model, api_key=api_key)
35
-
36
-
37
- def append_header():
38
- st.header('📄 Document Insights :rainbow[AI] Assistant 📚', divider='rainbow')
39
- st.text("📥 Upload documents in PDF format. Get insights.. ask questions..")
40
-
41
-
42
- def append_documentation_to_sidebar():
43
- with st.expander("Disclaimer"):
44
- st.markdown(
45
- """
46
- :warning: Do not upload sensitive data. We **temporarily** store text from the uploaded PDF documents solely
47
- for the purpose of processing your request, and we **do not assume responsibility** for any subsequent use
48
- or handling of the data submitted to third parties LLMs.
49
- """)
50
- with st.expander("Documentation"):
51
- st.markdown(
52
- """
53
- Upload a CV as PDF document. Once the spinner stops, you can proceed to ask your questions. The answers will
54
- be displayed in the right column. The system will answer your questions using the content of the document
55
- and mark refrences over the PDF viewer.
56
- """)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
NLP_QA_Tool/utils/__pycache__/config.cpython-38.pyc DELETED
Binary file (1.47 kB)
 
NLP_QA_Tool/utils/__pycache__/haystack.cpython-38.pyc DELETED
Binary file (3.59 kB)
 
NLP_QA_Tool/utils/__pycache__/ui.cpython-38.pyc DELETED
Binary file (733 Bytes)
 
NLP_QA_Tool/utils/check_pydantic_version.py DELETED
@@ -1,26 +0,0 @@
1
- import pydantic
2
- import os
3
- import fileinput
4
-
5
- def replace_string_in_files(folder_path, old_str, new_str):
6
- for subdir, dirs, files in os.walk(folder_path):
7
- for file in files:
8
- file_path = os.path.join(subdir, file)
9
-
10
- # Check if the file is a text file (you can modify this condition based on your needs)
11
- if file.endswith(".txt") or file.endswith(".py"):
12
- # Open the file in place for editing
13
- with fileinput.FileInput(file_path, inplace=True) as f:
14
- for line in f:
15
- # Replace the old string with the new string
16
- print(line.replace(old_str, new_str), end='')
17
-
18
-
19
- def use_pydantic_v1():
20
- module_file_path = pydantic.__file__
21
- module_file_path = module_file_path.split('pydantic')[0] + 'haystack'
22
- with open(module_file_path+'/schema.py','r') as f:
23
- haystack_schema_file = f.read()
24
-
25
- if 'from pydantic.v1' not in haystack_schema_file:
26
- replace_string_in_files(module_file_path, 'from pydantic', 'from pydantic.v1')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
NLP_QA_Tool/utils/config.py DELETED
@@ -1,43 +0,0 @@
1
- import argparse
2
- import os
3
- import os
4
- from dotenv import load_dotenv
5
-
6
- load_dotenv()
7
- parser = argparse.ArgumentParser(description='This app lists animals')
8
-
9
- document_store_choices = ('inmemory', 'weaviate', 'milvus', 'opensearch')
10
- parser.add_argument('--store', choices=document_store_choices, default='inmemory', help='DocumentStore selection (default: %(default)s)')
11
- parser.add_argument('--name', default="Document Insights: Extractive & Generative Methods")
12
-
13
- model_configs = {
14
- 'EMBEDDING_MODEL': os.getenv("EMBEDDING_MODEL", "sentence-transformers/all-MiniLM-L12-v2"),
15
- 'GENERATIVE_MODEL': os.getenv("GENERATIVE_MODEL", "gpt-4"),
16
- #'EXTRACTIVE_MODEL': os.getenv("EXTRACTIVE_MODEL", "deepset/roberta-base-squad2"),
17
- 'EXTRACTIVE_MODEL': os.getenv("EXTRACTIVE_MODEL", "deepset/gelectra-large-germanquad"),
18
- #'EXTRACTIVE_MODEL': os.getenv("EXTRACTIVE_MODEL", "MachineLearningReply/bert-base-german-legal-qa"),
19
- 'OPENAI_KEY': os.getenv("OPENAI_KEY"),
20
- 'COHERE_KEY': os.getenv("COHERE_KEY"),
21
- }
22
-
23
- document_store_configs = {
24
- # Weaviate Config
25
- 'WEAVIATE_HOST': os.getenv("WEAVIATE_HOST", "http://localhost"),
26
- 'WEAVIATE_PORT': os.getenv("WEAVIATE_PORT", 8080),
27
- 'WEAVIATE_INDEX': os.getenv("WEAVIATE_INDEX", "Document"),
28
- 'WEAVIATE_EMBEDDING_DIM': os.getenv("WEAVIATE_EMBEDDING_DIM", 768),
29
-
30
- # OpenSearch Config
31
- 'OPENSEARCH_SCHEME': os.getenv("OPENSEARCH_SCHEME", "https"),
32
- 'OPENSEARCH_USERNAME': os.getenv("OPENSEARCH_USERNAME", "admin"),
33
- 'OPENSEARCH_PASSWORD': os.getenv("OPENSEARCH_PASSWORD", "admin"),
34
- 'OPENSEARCH_HOST': os.getenv("OPENSEARCH_HOST", "localhost"),
35
- 'OPENSEARCH_PORT': os.getenv("OPENSEARCH_PORT", 9200),
36
- 'OPENSEARCH_INDEX': os.getenv("OPENSEARCH_INDEX", "document"),
37
- 'OPENSEARCH_EMBEDDING_DIM': os.getenv("OPENSEARCH_EMBEDDING_DIM", 768),
38
-
39
- # Milvus Config
40
- 'MILVUS_URI': os.getenv("MILVUS_URI", "http://localhost:19530/default"),
41
- 'MILVUS_INDEX': os.getenv("MILVUS_INDEX", "document"),
42
- 'MILVUS_EMBEDDING_DIM': os.getenv("MILVUS_EMBEDDING_DIM", 768),
43
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
NLP_QA_Tool/utils/haystack.py DELETED
@@ -1,124 +0,0 @@
1
- import streamlit as st
2
-
3
- from utils.config import document_store_configs, model_configs
4
- from haystack import Pipeline
5
- from haystack.schema import Answer
6
- from haystack.document_stores import BaseDocumentStore
7
- from haystack.document_stores import InMemoryDocumentStore, OpenSearchDocumentStore, WeaviateDocumentStore
8
- from haystack.nodes import EmbeddingRetriever, FARMReader, PromptNode, PreProcessor
9
- #from haystack.nodes import TextConverter, FileTypeClassifier, PDFToTextConverter
10
- from milvus_haystack import MilvusDocumentStore
11
- #Use this file to set up your Haystack pipeline and querying
12
-
13
- @st.cache_resource(show_spinner=False)
14
- def start_preprocessor_node():
15
- print('initializing preprocessor node')
16
- processor = PreProcessor(
17
- clean_empty_lines= True,
18
- clean_whitespace=True,
19
- clean_header_footer=True,
20
- #remove_substrings=None,
21
- split_by="word",
22
- split_length=100,
23
- split_respect_sentence_boundary=True,
24
- #split_overlap=0,
25
- #max_chars_check= 10_000
26
- )
27
- return processor
28
- #return docs
29
-
30
- @st.cache_resource(show_spinner=False)
31
- def start_document_store(type: str):
32
- #This function starts the documents store of your choice based on your command line preference
33
- print('initializing document store')
34
- if type == 'inmemory':
35
- document_store = InMemoryDocumentStore(use_bm25=True, embedding_dim=384)
36
- '''
37
- documents = [
38
- {
39
- 'content': "Pi is a super dog",
40
- 'meta': {'name': "pi.txt"}
41
- },
42
- {
43
- 'content': "The revenue of siemens is 5 milion Euro",
44
- 'meta': {'name': "siemens.txt"}
45
- },
46
- ]
47
- document_store.write_documents(documents)
48
- '''
49
- elif type == 'opensearch':
50
- document_store = OpenSearchDocumentStore(scheme = document_store_configs['OPENSEARCH_SCHEME'],
51
- username = document_store_configs['OPENSEARCH_USERNAME'],
52
- password = document_store_configs['OPENSEARCH_PASSWORD'],
53
- host = document_store_configs['OPENSEARCH_HOST'],
54
- port = document_store_configs['OPENSEARCH_PORT'],
55
- index = document_store_configs['OPENSEARCH_INDEX'],
56
- embedding_dim = document_store_configs['OPENSEARCH_EMBEDDING_DIM'])
57
- elif type == 'weaviate':
58
- document_store = WeaviateDocumentStore(host = document_store_configs['WEAVIATE_HOST'],
59
- port = document_store_configs['WEAVIATE_PORT'],
60
- index = document_store_configs['WEAVIATE_INDEX'],
61
- embedding_dim = document_store_configs['WEAVIATE_EMBEDDING_DIM'])
62
- elif type == 'milvus':
63
- document_store = MilvusDocumentStore(uri = document_store_configs['MILVUS_URI'],
64
- index = document_store_configs['MILVUS_INDEX'],
65
- embedding_dim = document_store_configs['MILVUS_EMBEDDING_DIM'],
66
- return_embedding=True)
67
- return document_store
68
-
69
- # cached to make index and models load only at start
70
- @st.cache_resource(show_spinner=False)
71
- def start_retriever(_document_store: BaseDocumentStore):
72
- print('initializing retriever')
73
- retriever = EmbeddingRetriever(document_store=_document_store,
74
- embedding_model=model_configs['EMBEDDING_MODEL'],
75
- top_k=5)
76
- #
77
-
78
- #_document_store.update_embeddings(retriever)
79
- return retriever
80
-
81
-
82
- @st.cache_resource(show_spinner=False)
83
- def start_reader():
84
- print('initializing reader')
85
- reader = FARMReader(model_name_or_path=model_configs['EXTRACTIVE_MODEL'])
86
- return reader
87
-
88
-
89
-
90
- # cached to make index and models load only at start
91
- @st.cache_resource(show_spinner=False)
92
- def start_haystack_extractive(_document_store: BaseDocumentStore, _retriever: EmbeddingRetriever, _reader: FARMReader):
93
- print('initializing pipeline')
94
- pipe = Pipeline()
95
- pipe.add_node(component=_retriever, name="Retriever", inputs=["Query"])
96
- pipe.add_node(component= _reader, name="Reader", inputs=["Retriever"])
97
- return pipe
98
-
99
- @st.cache_resource(show_spinner=False)
100
- def start_haystack_rag(_document_store: BaseDocumentStore, _retriever: EmbeddingRetriever, openai_key):
101
- prompt_node = PromptNode(default_prompt_template="deepset/question-answering",
102
- model_name_or_path=model_configs['GENERATIVE_MODEL'],
103
- api_key=openai_key,
104
- max_length=500)
105
- pipe = Pipeline()
106
-
107
- pipe.add_node(component=_retriever, name="Retriever", inputs=["Query"])
108
- pipe.add_node(component=prompt_node, name="PromptNode", inputs=["Retriever"])
109
-
110
- return pipe
111
-
112
- #@st.cache_data(show_spinner=True)
113
- def query(_pipeline, question):
114
- params = {}
115
- results = _pipeline.run(question, params=params)
116
- return results
117
-
118
- def initialize_pipeline(task, document_store, retriever, reader, openai_key = ""):
119
- if task == 'extractive':
120
- return start_haystack_extractive(document_store, retriever, reader)
121
- elif task == 'rag':
122
- return start_haystack_rag(document_store, retriever, openai_key)
123
-
124
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
NLP_QA_Tool/utils/ui.py DELETED
@@ -1,16 +0,0 @@
1
- import streamlit as st
2
-
3
- def set_state_if_absent(key, value):
4
- if key not in st.session_state:
5
- st.session_state[key] = value
6
-
7
- def set_initial_state():
8
- set_state_if_absent("question", "Ask something here?")
9
- set_state_if_absent("results_extractive", None)
10
- set_state_if_absent("results_generative", None)
11
- set_state_if_absent("task", None)
12
-
13
- def reset_results(*args):
14
- st.session_state.results_extractive = None
15
- st.session_state.results_generative = None
16
- st.session_state.task = None