Shreya Kar commited on
Commit
ebe691a
·
unverified ·
2 Parent(s): dc764cb ec6c645

Merge pull request #3 from MachineLearningReply/other/AI-audit-agent

Browse files
Files changed (4) hide show
  1. .DS_Store +0 -0
  2. app.py +3 -3
  3. document_qa_engine.py +5 -4
  4. utils.py +1 -1
.DS_Store CHANGED
Binary files a/.DS_Store and b/.DS_Store differ
 
app.py CHANGED
@@ -38,7 +38,7 @@ def manage_files(modal, document_store):
38
  if modal.is_open():
39
  with modal.container():
40
  uploaded_file = st.file_uploader(
41
- "Upload a CV in PDF format",
42
  type=("pdf",),
43
  on_change=new_file(),
44
  disabled=st.session_state['document_qa_model'] is None,
@@ -57,7 +57,7 @@ def manage_files(modal, document_store):
57
  if uploaded_file:
58
  st.session_state['file_uploaded'] = True
59
  st.session_state['files'] = pd.concat([st.session_state['files'], edited_df])
60
- with st.spinner('Processing the CV content...'):
61
  store_file_in_table(document_store, uploaded_file)
62
  ingest_document(uploaded_file)
63
 
@@ -103,7 +103,7 @@ def init_session_state():
103
 
104
  def set_page_config():
105
  st.set_page_config(
106
- page_title="CV Insights AI Assistant",
107
  page_icon=":shark:",
108
  initial_sidebar_state="expanded",
109
  layout="wide",
 
38
  if modal.is_open():
39
  with modal.container():
40
  uploaded_file = st.file_uploader(
41
+ "Upload a document in PDF format",
42
  type=("pdf",),
43
  on_change=new_file(),
44
  disabled=st.session_state['document_qa_model'] is None,
 
57
  if uploaded_file:
58
  st.session_state['file_uploaded'] = True
59
  st.session_state['files'] = pd.concat([st.session_state['files'], edited_df])
60
+ with st.spinner('Processing the document content...'):
61
  store_file_in_table(document_store, uploaded_file)
62
  ingest_document(uploaded_file)
63
 
 
103
 
104
  def set_page_config():
105
  st.set_page_config(
106
+ page_title="AI Audit Assistant",
107
  page_icon=":shark:",
108
  initial_sidebar_state="expanded",
109
  layout="wide",
document_qa_engine.py CHANGED
@@ -76,12 +76,13 @@ def create_inference_pipeline(document_store, model_name, api_key):
76
  generator = OpenAIChatGenerator(api_key=Secret.from_token("<local LLM doesn't need an API key>"),
77
  model=model_name,
78
  api_base_url="http://localhost:1234/v1",
79
- generation_kwargs={"max_tokens": MAX_TOKENS}
80
  )
81
  elif "gpt" in model_name:
82
  generator = OpenAIChatGenerator(api_key=Secret.from_token(api_key), model=model_name,
83
- generation_kwargs={"max_tokens": MAX_TOKENS},
84
  streaming_callback=lambda chunk: print(chunk.content, end="", flush=True),
 
85
  )
86
  else:
87
  generator = HuggingFaceTGIChatGenerator(token=Secret.from_token(api_key), model=model_name,
@@ -118,7 +119,7 @@ class DocumentQAEngine:
118
 
119
  def inference(self, query, input_messages: List[dict]):
120
  system_message = ChatMessage.from_system(
121
- "You are a professional HR recruiter that answers questions based on the content of the uploaded CV. in 1 or 2 sentences.")
122
  messages = [system_message]
123
  for message in input_messages:
124
  if message["role"] == "user":
@@ -127,7 +128,7 @@ class DocumentQAEngine:
127
  messages.append(
128
  ChatMessage.from_user(message["content"]))
129
  messages.append(ChatMessage.from_user("""
130
- Relevant information from the uploaded CV:
131
  {% for doc in documents %}
132
  {{ doc.content }}
133
  {% endfor %}
 
76
  generator = OpenAIChatGenerator(api_key=Secret.from_token("<local LLM doesn't need an API key>"),
77
  model=model_name,
78
  api_base_url="http://localhost:1234/v1",
79
+ generation_kwargs={"max_tokens": MAX_TOKENS},
80
  )
81
  elif "gpt" in model_name:
82
  generator = OpenAIChatGenerator(api_key=Secret.from_token(api_key), model=model_name,
83
+ generation_kwargs={"max_tokens": MAX_TOKENS, "temperature": 0},
84
  streaming_callback=lambda chunk: print(chunk.content, end="", flush=True),
85
+
86
  )
87
  else:
88
  generator = HuggingFaceTGIChatGenerator(token=Secret.from_token(api_key), model=model_name,
 
119
 
120
  def inference(self, query, input_messages: List[dict]):
121
  system_message = ChatMessage.from_system(
122
+ "You are a professional analyzer of git repos, having access to the repo content. In 1-3 sentences")
123
  messages = [system_message]
124
  for message in input_messages:
125
  if message["role"] == "user":
 
128
  messages.append(
129
  ChatMessage.from_user(message["content"]))
130
  messages.append(ChatMessage.from_user("""
131
+ Relevant information from the uploaded repo:
132
  {% for doc in documents %}
133
  {{ doc.content }}
134
  {% endfor %}
utils.py CHANGED
@@ -50,7 +50,7 @@ def append_documentation_to_sidebar():
50
  with st.expander("Documentation"):
51
  st.markdown(
52
  """
53
- Upload a CV as PDF document. Once the spinner stops, you can proceed to ask your questions. The answers will
54
  be displayed in the right column. The system will answer your questions using the content of the document
55
  and mark refrences over the PDF viewer.
56
  """)
 
50
  with st.expander("Documentation"):
51
  st.markdown(
52
  """
53
+ Upload document as PDF document. Once the spinner stops, you can proceed to ask your questions. The answers will
54
  be displayed in the right column. The system will answer your questions using the content of the document
55
  and mark refrences over the PDF viewer.
56
  """)