from typing import List from pypdf import PdfReader from haystack.utils import Secret from haystack import Pipeline, Document, component from haystack.components.preprocessors import DocumentCleaner, DocumentSplitter from haystack.components.writers import DocumentWriter from haystack.components.embedders import SentenceTransformersDocumentEmbedder, SentenceTransformersTextEmbedder from haystack.document_stores.in_memory import InMemoryDocumentStore from haystack.components.retrievers.in_memory import InMemoryEmbeddingRetriever from haystack.components.builders import PromptBuilder from haystack.components.generators.chat import OpenAIChatGenerator, HuggingFaceTGIChatGenerator from haystack.components.generators import OpenAIGenerator, HuggingFaceTGIGenerator from haystack.document_stores.types import DuplicatePolicy SENTENCE_RETREIVER_MODEL = "sentence-transformers/all-MiniLM-L6-v2" MAX_TOKENS = 500 template = """ As a professional HR recruiter given the following information, answer the question shortly and concisely in 1 or 2 sentences. Context: {% for document in documents %} {{ document.content }} {% endfor %} Question: {{question}} Answer: """ @component class UploadedFileConverter: """ A component to convert uploaded PDF files to Documents """ @component.output_types(documents=List[Document]) def run(self, uploaded_file): pdf = PdfReader(uploaded_file) documents = [] # uploaded file name without .pdf at the end and with _ and page number at the end name = uploaded_file.name.rstrip('.PDF') + '_' for page in pdf.pages: documents.append( Document( content=page.extract_text(), meta={'name': name + f"_{page.page_number}"})) return {"documents": documents} def create_ingestion_pipeline(document_store): doc_embedder = SentenceTransformersDocumentEmbedder(model=SENTENCE_RETREIVER_MODEL) doc_embedder.warm_up() pipeline = Pipeline() pipeline.add_component("converter", UploadedFileConverter()) pipeline.add_component("cleaner", DocumentCleaner()) pipeline.add_component("splitter", DocumentSplitter(split_by="passage", split_length=100, split_overlap=10)) pipeline.add_component("embedder", doc_embedder) pipeline.add_component("writer", DocumentWriter(document_store=document_store, policy=DuplicatePolicy.OVERWRITE)) pipeline.connect("converter", "cleaner") pipeline.connect("cleaner", "splitter") pipeline.connect("splitter", "embedder") pipeline.connect("embedder", "writer") return pipeline def create_query_pipeline(document_store, model_name, api_key): prompt_builder = PromptBuilder(template=template) if model_name == "local LLM": generator = OpenAIGenerator(model=model_name, api_base_url="http://localhost:1234/v1", generation_kwargs={"max_tokens": MAX_TOKENS} ) elif "gpt" in model_name: generator = OpenAIGenerator(api_key=Secret.from_token(api_key), model=model_name, generation_kwargs={"max_tokens": MAX_TOKENS} ) else: generator = HuggingFaceTGIGenerator(token=Secret.from_token(api_key), model=model_name, generation_kwargs={"max_new_tokens": MAX_TOKENS} ) query_pipeline = Pipeline() query_pipeline.add_component("text_embedder", SentenceTransformersTextEmbedder(model=SENTENCE_RETREIVER_MODEL)) query_pipeline.add_component("retriever", InMemoryEmbeddingRetriever(document_store, top_k=3)) query_pipeline.add_component("prompt_builder", prompt_builder) query_pipeline.add_component("generator", generator) query_pipeline.connect("text_embedder.embedding", "retriever.query_embedding") query_pipeline.connect("retriever.documents", "prompt_builder.documents") query_pipeline.connect("prompt_builder", "generator") return query_pipeline class DocumentQAEngine: def __init__(self, model_name, api_key=None ): self.api_key = api_key self.model_name = model_name document_store = InMemoryDocumentStore() self.chunks = [] self.query_pipeline = create_query_pipeline(document_store, model_name, api_key) self.pdf_ingestion_pipeline = create_ingestion_pipeline(document_store) def ingest_pdf(self, uploaded_file): self.pdf_ingestion_pipeline.run({"converter": {"uploaded_file": uploaded_file}}) def process_message(self, query): response = self.query_pipeline.run({"text_embedder": {"text": query}, "prompt_builder": {"question": query}}) return response["generator"]["replies"][0]