Spaces:
Runtime error
Runtime error
File size: 1,545 Bytes
fcfe4a2 cbf2af2 fcfe4a2 f5ddf01 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
import gradio as gr
from transformers import pipeline
summarizer = pipeline(task="summarization", model="t5-small")
def summarize_text(x):
return summarizer(x)[0]["summary_text"]
translator = pipeline(task="translation", model="t5-small")
def translate_text(x):
return translator(x)[0]["translation_text"]
classifier = pipeline(task="sentiment-analysis")
def text_classification(x):
preds = classifier(x)
return [pred["label"] for pred in preds]
demo = gr.Blocks()
with demo:
gr.Markdown("Language Modeling Tasks")
with gr.Tabs():
with gr.TabItem("Text Classification"):
with gr.Row():
tc_input = gr.Textbox(label = "Input Text")
tc_output = gr.Textbox(label = "Output")
tc_button = gr.Button("Classify")
with gr.TabItem("Summarization"):
with gr.Row():
s_input = gr.Textbox(label = "Input Text")
s_output = gr.Textbox(label = "Output Text")
s_button = gr.Button("Summarize")
with gr.TabItem("Translator"):
with gr.Row():
translate_input = gr.Textbox(label = "Input Text")
translate_output = gr.Textbox(label = "Output Text")
translate_button = gr.Button("Translate")
tc_button.click(text_classification, inputs=tc_input, outputs=tc_output)
s_button.click(summarize_text, inputs=s_input, outputs=s_output)
translate_button.click(translate_text, inputs=translate_input, outputs=translate_output)
demo.launch() |