import gradio as gr from transformers import pipeline summarizer = pipeline(task="summarization", model="t5-small") def summarize_text(x): return summarizer(x)[0]["summary_text"] translator = pipeline(task="translation", model="t5-small") def translate_text(x): return translator(x)[0]["translation_text"] classifier = pipeline(task="sentiment-analysis") def text_classification(x): preds = classifier(x) return [pred["label"] for pred in preds] demo = gr.Blocks() with demo: gr.Markdown("Language Modeling Tasks") with gr.Tabs(): with gr.TabItem("Text Classification"): with gr.Row(): tc_input = gr.Textbox(label = "Input Text") tc_output = gr.Textbox(label = "Output") tc_button = gr.Button("Classify") with gr.TabItem("Summarization"): with gr.Row(): s_input = gr.Textbox(label = "Input Text") s_output = gr.Textbox(label = "Output Text") s_button = gr.Button("Summarize") with gr.TabItem("Translator"): with gr.Row(): translate_input = gr.Textbox(label = "Input Text") translate_output = gr.Textbox(label = "Output Text") translate_button = gr.Button("Translate") tc_button.click(text_classification, inputs=tc_input, outputs=tc_output) s_button.click(summarize_text, inputs=s_input, outputs=s_output) translate_button.click(translate_text, inputs=translate_input, outputs=translate_output) demo.launch()